OFFSET
3,1
COMMENTS
Morley (1894/95) proved 2^(2*p-2) == (-1)^((p-1)/2)*binomial(p-1,(p-1)/2) mod p^3 for all primes p > 3.
Morley quotients are even, since 2^(2*p-2) and binomial(p-1,(p-1)/2) are even and p^3 is odd.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 3..200
C. Aebi, G. Cairns, Morley’s other miracle, Math. Mag., 85 (2012), 205-211.
F. Morley, Note on the Congruence 2^4n == (-1)^n*(2n)!/(n!)^2 where 2n+1 is a prime, Annals of Mathematics, Vol. 9 (1894 - 1895), pp. 168-170.
EXAMPLE
prime(3) = 5, so a(3) = (2^(2*5-2) - (-1)^((5-1)/2)*binomial(5-1,(5-1)/2))/5^3 = (2^8 - binomial(4,2))/5^3 = (256-6)/125 = 2.
MATHEMATICA
m[p_] := (2^(2*p-2) - (-1)^((p-1)/2)*Binomial[p-1, (p-1)/2])/p^3; Table[ m[ Prime[n]], {n, 3, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Feb 22 2013
STATUS
approved