login
A222114
Least integer m>1 such that 6*p_k*(p_k-1) (k=1,...,n) are pairwise incongruent modulo m, where p_k denotes the k-th prime.
1
2, 5, 5, 13, 19, 29, 31, 37, 37, 37, 61, 61, 61, 89, 97, 97, 97, 109, 131, 139, 149, 157, 157, 157, 173, 181, 193, 193, 193, 193, 241, 241, 241, 271, 271, 271, 271, 317, 331, 331, 331, 349, 349, 367, 367, 367, 397, 397, 397, 397, 397, 397, 457, 457, 457, 457, 457, 457, 523, 523
OFFSET
1,1
COMMENTS
Conjecture: For each n=3,4,..., a(n) is the first prime p>=p_n dividing none of those p_i+p_j-1 (1<=i<j<=n).
LINKS
Zhi-Wei Sun, On functions taking only prime values, J. Number Theory, 133 (2013), 2794-2812.
EXAMPLE
a(2)=5 since 6*p_1*(p_1-1)=12 and 6*p_2*(p_2-1)=36 are incongruent modulo 5 but 12 is congruent to 36 modulo any of 2, 3, 4.
MATHEMATICA
R[n_, m_]:=Union[Table[Mod[6Prime[k](Prime[k]-1), m], {k, 1, n}]]
s=2
Do[Do[If[Length[R[n, m]]==n, s=m; Print[n, " ", m]; Goto[aa]], {m, s, n^2}];
Print[n]; Label[aa]; Continue, {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, May 13 2013
STATUS
approved