login
A222082
Self-convolution square of A090845.
4
1, 2, 5, 10, 20, 40, 67, 126, 203, 354, 571, 908, 1486, 2250, 3586, 5322, 8186, 12234, 17976, 26970, 38435, 57024, 80805, 116376, 165914, 232352, 332196, 456154, 645469, 885826, 1225998, 1692686, 2290512, 3168986, 4242896, 5805526, 7782803, 10459912, 14110205
OFFSET
0,2
LINKS
EXAMPLE
G.f.: A(x) = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 40*x^5 + 67*x^6 +...
Let G(x) = A(x)^(1/2) denote the g.f. of A090845:
G(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 9*x^5 + 10*x^6 + 20*x^7 + 22*x^8 + 40*x^9 + 51*x^10 + 67*x^11 + 114*x^12 + 126*x^13 + 203*x^14 +...
then the coefficients of G(x)^2 and G(x)^3 begin:
G(x)^2: [1, 2, 5, 10, 20, 40, 67, 126, 203, 354, 571, 908, 1486, ...];
G(x)^3: [1, 3, 9, 22, 51, 114, 230, 468, 885, 1674, 3045, 5418, ..];
where the sorted union of these coefficients yield sequence A090845.
PROG
(PARI) {a(n)=local(A=[1, 1]); for(i=1, #binary(3*n+1), A=vecsort(concat(Vec(Ser(A)^2), Vec(Ser(A)^3)))); Vec(Ser(A)^2)[n+1]}
for(n=0, 60, print1(a(n), ", "))
CROSSREFS
Sequence in context: A159230 A181366 A068034 * A327287 A296122 A293324
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 06 2013
STATUS
approved