login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A222081 Self-convolution equals A222080. 2
1, 1, 5, 41, 453, 6205, 100649, 1878277, 39534033, 924986401, 23790991061, 666732284009, 20211529694661, 658743175016461, 22964324182662569, 852450674859207605, 33563386167190876321, 1396839898167086931137, 61260669590285253202981, 2823455397312949805962921 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

A222080 satisfies: 1 = Sum_{n>=0} A222080(n)*x^n*(1 - (2*n+1)*x)^2.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..300

FORMULA

a(n) == 1 (mod 4).

Limit A222080(n)/a(n) = 2.

EXAMPLE

G.f.: A(x) = 1 + x + 5*x^2 + 41*x^3 + 453*x^4 + 6205*x^5 + 100649*x^6 +...

where

A(x)^2 = 1 + 2*x + 11*x^2 + 92*x^3 + 1013*x^4 + 13726*x^5 + 219919*x^6 +...+ A222080(n)*x^n +...

such that A222080 satisfies:

1 = (1-x)^2 + 2*x*(1-3*x)^2 + 11*x^2*(1-5*x)^2 + 92*x^3*(1-7*x)^2 + 1013*x^4*(1-9*x)^2 + 13726*x^5*(1-11*x)^2 + 219919*x^6*(1-13*x)^2 +...+ A222080(n)*x^n*(1 - (2*n+1)*x)^2 +...

PROG

(PARI) {A222080(n)=polcoeff(1-sum(m=0, n-1, A222080(m)*x^m*(1-(2*m+1)*x+x*O(x^n))^2), n)}

{a(n)=polcoeff(sqrt(sum(k=0, n, A222080(k)*x^k+x*O(x^n))), n)}

for(n=0, 25, print1(a(n), ", "))

CROSSREFS

Cf. A222080.

Sequence in context: A115257 A225095 A302100 * A047735 A096364 A210661

Adjacent sequences:  A222078 A222079 A222080 * A222082 A222083 A222084

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Feb 07 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 03:54 EDT 2019. Contains 327210 sequences. (Running on oeis4.)