OFFSET
0,3
LINKS
Ayhan Dil and Veli Kurt, Polynomials related to harmonic numbers and evaluation of harmonic number series I, INTEGERS, 12 (2012), #A38. See Eq. (60).
FORMULA
a(n) = Sum_{k=0..n} A008277(n,k) * (A001008(k)/A002805(k)) * A000142(n). - Michel Marcus, Feb 08 2013
Sum_{n>=0} a(n) * x^n / n!^2 = Sum_{n>=1} H(n) * (exp(x) - 1)^n / n!, where H(n) is the n-th harmonic number. - Ilya Gutkovskiy, Jun 03 2022
MATHEMATICA
Table[Sum[HarmonicNumber[k] StirlingS2[n, k] n!, {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)
PROG
(PARI) a(n) = sum(k=0, n, (sum(i=0, k, (-1)^i*binomial(k, i)*i^n) * (-1)^k/k!)*sum(i=1, k, 1/i) * n!); \\ Michel Marcus, Feb 08 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 08 2013
EXTENSIONS
More terms from Michel Marcus, Feb 08 2013
STATUS
approved