This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A222056 Decimal expansion of (6/Pi^2)*Sum_{n>=1} 1/prime(n)^2. 3
 2, 7, 4, 9, 3, 3, 4, 6, 3, 3, 8, 6, 5, 2, 5, 5, 8, 8, 9, 1, 7, 5, 3, 8, 7, 3, 8, 7, 2, 2, 6, 7, 9, 3, 5, 6, 9, 0, 9, 8, 1, 6, 4, 6, 1, 9, 7, 5, 8, 6, 2, 3, 5, 1, 7, 8, 9, 8, 6, 0, 3, 4, 4, 7, 3, 6, 2, 4, 1, 6, 3, 1, 7, 2, 0, 3, 1, 7, 5, 7, 6, 9, 4, 1, 5, 6, 1, 2, 7, 3, 8, 3, 2, 1, 8, 7, 1, 2, 2, 4, 9, 0 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This is the probability that the gcd of any two integers is prime. - David Cushing, Mar 27 2013 LINKS Math StackExchange, Given 2 randomly chosen integers x,y what is P(k=gcd(x,y))?, May 2011. EXAMPLE 0.27493346338652558891753873872267935690981646197586235178986... MATHEMATICA Drop[Flatten[RealDigits[N[PrimeZetaP[2] 6/Pi^2, 100]]], -1] (* Geoffrey Critzer, Jan 17 2015 *) PROG (PARI) eps()=2.>>bitprecision(1.) primezeta(s)=my(t=s*log(2)); sum(k=1, lambertw(t/eps())\t, moebius(k)/k*log(abs(zeta(k*s)))) primezeta(2)*6/Pi^2 \\ Charles R Greathouse IV, Jul 30 2016 CROSSREFS Cf. A085548. Sequence in context: A011050 A198935 A019779 * A247448 A102514 A115857 Adjacent sequences:  A222053 A222054 A222055 * A222057 A222058 A222059 KEYWORD nonn,cons,nice AUTHOR N. J. A. Sloane, Feb 06 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 13 23:43 EDT 2019. Contains 327983 sequences. (Running on oeis4.)