OFFSET
1,2
COMMENTS
For an algorithm to compute the partition class polynomial Hpart_n(x) see the Bruinier-Ono-Sutherland paper, 3.3. Algorithm 3, p. 15-19.
Note that the absolute value of T(n,2) is also the trace Tr(n) = A183011(n), the numerator of the finite algebraic formula for the number of partitions of n. The formula is p(n) = Tr(n)/(24*n - 1). See theorem 1.1 in the Bruinier-Ono paper.
LINKS
J. H. Bruinier and K. Ono, Algebraic formulas for the coefficients of half-integral weight harmonic weak Maass forms
J. H. Bruinier, K. Ono, A. V. Sutherland, Class polynomials for nonholomorphic modular functions
A. V. Sutherland, Partition class polynomials, Hpart_n(x), for n = 1..770
EXAMPLE
For n = 1 the first partition class polynomial Hpart_1(x) is x^3 - 23*x^2 + 3592/23*x - 419, so the numerators of the coefficients are 1, -23, 3592, -419.
Triangle begins:
1, -23, 3592, -419;
1, -94, 169659, -65838, 1092873176, 145023;
1, -213, 1312544, -723721, 44648582886, 9188934683, 166629520876208, 2791651635293;
1, -475, 9032603, -9455070, 3949512899743, -97215753021, 9776785708507683, -53144327916296, -134884469547631;
...
CROSSREFS
KEYWORD
sign,frac,tabf
AUTHOR
Omar E. Pol, Mar 04 2013
STATUS
approved