login
A221985
Partial sums of primes of the form (n+1)^11 - n^11.
1
313968931, 6926576780, 75545517171, 2332950292798, 26362646685307289, 157261278401555730, 11893629184686938707, 40838913299508512438, 270600054840430038249, 203248659302772610786786, 431646786892325713723157, 907860322879288498305774, 2535699587078276763578623
OFFSET
1,1
COMMENTS
Partial sums of primes equal to the difference of two consecutive eleventh powers (x+1)^11 - x^11 = 11x(x+1)(x^2+x+1)[ x(x+1)(x^2+x+1)(x^2+x+3)+1] +1 (A189055). Values of x = A211184. Number of primes equal (x+1)^11 - x^11 < 10^(n) in A221983. Partial sums of number of primes of the form (x+1)^11 - x^11 have similar characteristics to similar sequences for natural primes (A007504), cuban primes (A221793) and primes of the form (x+1)^p - x^p for p = 5 (A221848) and p = 7 (A221979).
LINKS
MATHEMATICA
Accumulate[Select[Differences[Range[300]^11], PrimeQ]] (* Harvey P. Dale, Mar 24 2023 *)
CROSSREFS
Sequence in context: A034610 A015410 A189055 * A219784 A105005 A157789
KEYWORD
nonn,easy
AUTHOR
Vladimir Pletser, Feb 02 2013
STATUS
approved