OFFSET
1,1
COMMENTS
Partial sums of primes equal to the difference of two consecutive seventh powers (x+1)^7 - x^7 = 7x(x+1)(x^2+x+1)^2+1 (A121618). Values of x = A121619 - 1. Number of primes equal (x+1)^7 - x^7 < 10^(n) in A221977. Partial sums of number of primes of the form (x+1)^7 - x^7 have similar characteristics to similar sequences for natural primes (A007504), cuban primes (A221793) and primes of the form (x+1)^5 - x^5 (A221848).
LINKS
Vladimir Pletser, Table of n, a(n) for n = 1..1000
MATHEMATICA
Accumulate[Select[Differences[Range[80]^7], PrimeQ]] (* Harvey P. Dale, Jul 09 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Pletser, Feb 02 2013
STATUS
approved