login
Expansion of (2-17*x)/((1-4*x)*(1-6*x)*(1-8*x)*(1-10*x)*(1-16*x)).
0

%I #10 Jun 13 2015 00:54:37

%S 2,71,1660,32620,586992,10063536,167802560,2752629440,44715480832,

%T 722121976576,11620069493760,186576402754560,2991722883510272,

%U 47932118427938816,767555606241525760,12287275150992916480,196659996591191949312,3147193762284946784256,50361421111809832386560,805845807395237180211200,12894162488881329394941952

%N Expansion of (2-17*x)/((1-4*x)*(1-6*x)*(1-8*x)*(1-10*x)*(1-16*x)).

%H Christian Brouder, William J. Keith, Ângela Mestre, <a href="http://arxiv.org/abs/1301.0874">Closed forms for a multigraph enumeration</a>, arXiv preprint arXiv:1301.0874, 2013.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (44,-732,5776,-21632,30720).

%F G.f.: (2-17*x)/((1-4*x)*(1-6*x)*(1-8*x)*(1-10*x)*(1-16*x)).

%F a(n) = (1/2)*((64/3)*16^n +(27/2)*6^n -(250/12)*10^n -2*4^n -8*8^n) (see Brouder et al. paper, last row of the table on page 2).

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_, Feb 04 2013