The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A221762 Numbers m such that 11*m^2 + 5 is a square. 6
 1, 2, 22, 41, 439, 818, 8758, 16319, 174721, 325562, 3485662, 6494921, 69538519, 129572858, 1387284718, 2584962239, 27676155841, 51569671922, 552135832102, 1028808476201, 11015040486199, 20524599852098, 219748673891878, 409463188565759 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Corresponding squares are: 16, 49, 5329, 18496, 2119936, 7360369, 843728209, 2929407376, ... (subsequence of A016778). The Diophantine equation 11*x^2+k = y^2, for |k|<11, has integer solutions with the following k values: k = -10, the nonnegative x values are in A198947; k =  -8,            "                    2*A075839; k =  -7,            "                    A221763; k =  -2,            "                    A075839; k =   1,            "                    A001084; k =   4,            "                    A075844; k =   5,            "                    this sequence; k =   9,            "                    3*A001084. Also, the Diophantine equation h*x^2+5 = y^2 has infinitely many integer solutions for h = 5, 11, 19, 20, 29, 31, 41, 44, 55, 59, ... a(n+1)/a(n) tends alternately to (1+sqrt(11))^2/10 and (4+sqrt(11))^2/5. a(n+2)/a(n) tends to A176395^2/2. LINKS Bruno Berselli, Table of n, a(n) for n = 1..500 Index entries for linear recurrences with constant coefficients, signature (0,20,0,-1). FORMULA G.f.: x*(1+2*x+2*x^2+x^3)/(1-20*x^2+x^4). a(n) = -a(1-n) = ((-11*(-1)^n+4*t)*(10+3*t)^floor(n/2)-(11*(-1)^n+4*t)*(10-3*t)^floor(n/2))/22, where t=sqrt(11). a(n) = 20*a(n-2) - a(n-4) for n>4, a(1)=1, a(2)=2, a(3)=22, a(4)=41. a(n)*a(n-3)-a(n-1)*a(n-2) = -(3/2)*(9-7*(-1)^n). a(n+1) + a(n-1) =  A198949(n), with a(0)=-1. 2*a(n-1) - a(n) =  A001084(n/2-1) for even n. MAPLE A221762:=proc(q) local n; for n from 1 to q do if type(sqrt(11*n^2+5), integer) then print(n); fi; od; end: A221762(1000); # Paolo P. Lava, Feb 19 2013 MATHEMATICA LinearRecurrence[{0, 20, 0, -1}, {1, 2, 22, 41}, 24] CoefficientList[Series[(1 + 2 x + 2 x^2 + x^3)/(1 - 20 x^2 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 18 2013 *) PROG (Maxima) makelist(expand(((-11*(-1)^n+4*sqrt(11))*(10+3*sqrt(11))^floor(n/2)-(11*(-1)^n+4*sqrt(11))*(10-3*sqrt(11))^floor(n/2))/22), n, 1, 24); (MAGMA) m:=24; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x+2*x^2+x^3)/(1-20*x^2+x^4))); (MAGMA) I:=[1, 2, 22, 41]; [n le 4 select I[n] else 20*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Aug 18 2013 CROSSREFS Cf. A001084, A075839, A075844, A198947, A198949, A221763. Cf. A049629 (numbers m such that 20*m^2 + 5 is a square), A075796 (numbers m such that 5*m^2 + 5 is a square). Sequence in context: A126913 A019593 A060108 * A154798 A080142 A306969 Adjacent sequences:  A221759 A221760 A221761 * A221763 A221764 A221765 KEYWORD nonn,easy AUTHOR Bruno Berselli, Jan 24 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 12 08:50 EDT 2021. Contains 342912 sequences. (Running on oeis4.)