Maple-assisted proof of formula for A221569

Robert Israel

4 June 2018
There are $5^{2}=25$ configurations for a sub-array of length 2 . Consider the 25×25 transition matrix T such that $T_{i j}=1$ if the left two elements of a sub-array of length 3 could be in configuration i while the right two elements are in configuration j (i.e. the middle entry is compatible with both i and j, and differs from at least one neighbour by something other than 1 , and 0 otherwise. The following Maple code computes it.

```
[> Configs:= [seq(seq([i,j],i=0..4),j=0..4)]:
Compatible:= proc(i,j)
    if Configs[i][2] <> Configs[j][1] then return O fi;
    if abs(Configs[i][2] - Configs[i][1]) = 1 and abs(Configs[j][1]
    -Configs[j][2]) = 1 then return O fi;
        1
    end proc:
[> T:= Matrix(25,25,Compatible):
```

Thus for $n \geq 2, a(n)=u^{T} T^{n-1} u$ where u is a column vector with $u_{i}=1$ for i corresponding to pairs that do not differ by 1,0 otherwise. The following Maple code produces this vector.
[> u:= Vector (25, i \rightarrow `if`(abs (Configs[i][1]-Configs[i][2]) $=1$, 0, 1)):

To check, here are the first few entries of our sequence.

```
\(>\) TV[0]:= u:
    for n from 1 to 15 do \(\mathrm{TV}[\mathrm{n}]:=\mathrm{T}\). \(\mathrm{TV}[\mathrm{n}-1]\) od:
```



```
\(A:=[17,59,289,1293,5913,26911,122621,558547,2544357,11590169,52796369\),
    240501763, 1095550873, 4990531051, 22733220441, 103555975477]
```

Now here is the minimal polynomial P of T, as computed by Maple.
$\left[\begin{array}{r}>\mathrm{P}:=\text { unapply (LinearAlgebra:-MinimalPolynomial (T, t), } \mathrm{t}) ; \\ P:=t \mapsto t^{11}-5 t^{10}+4 t^{9}-6 t^{8}-11 t^{7}-9 t^{6}-12 t^{5}-4 t^{4}-15 t^{3}-3 t^{2}\end{array}\right.$
This turns out to have degree 11, but with the two lowest coefficients 0 . Thus we will have
$0=u^{T} P(T) T^{n} u=\sum_{i=2}^{11} p_{i} a(i+n+1)=\sum_{i=0}^{9} p_{i+2} a(i+n+3)$ where p_{i} is the coefficient of t^{i} in $P(t)$.
That corresponds to a homogeneous linear recurrence of order 9 , which would hold true for any u, after a delay of 3 . It seems that with our particular u and v we have a recurrence of order only 5 ,
corresponding to a factor of P.

$$
\begin{align*}
& \text { > factor (P(t)); } \\
& t^{2}\left(t^{2}+t+1\right)\left(t^{2}-t+1\right)\left(t^{5}-5 t^{4}+3 t^{3}-t^{2}-15 t-3\right) \tag{3}\\
& \text { The complementary factor } R(t)=\frac{P(t)}{Q(t)} \text { has degree } 6 \text {. } \\
& Q:=t->t^{\wedge} 5-5 * t^{\wedge} 4+3 * t^{\wedge} 3-t^{\wedge} 2-15 * t-3: \\
& R:=\text { unapply (normal (} \mathrm{P}(\mathrm{t}) / \mathrm{Q}(\mathrm{t}) \text {) , } \mathrm{t}) \text {; } \\
& R:=t \mapsto\left(t^{4}+t^{2}+1\right) t^{2} \tag{4}
\end{align*}
$$

Now we want to show that $b(n)=u^{T} Q(T) T^{n-1} u=0$ for all $n \geq 1$. This will certainly satisfy the order-6 recurrence

$$
\sum_{i=2}^{6} r_{i} b(i+n)=\sum_{i=2}^{6} r_{i} u^{T} Q(T) T^{n+i-1} v=u Q(T) R(T) T^{n-1} u=u P(T) T^{n-1} u=0
$$

where r_{i} are the coefficients of $R(t)$. To show all $b(n)=0$ it suffices to show $b(1)=\ldots=b(6)=0$.

$$
\left[\begin{array}{c}
>\operatorname{seq}\left(u^{\wedge} \% T \cdot Q(T) \cdot T^{\wedge}(n-1) \underset{u}{ } \cdot(n=1 \ldots 6) ;\right. \tag{5}\\
0,0,0,0,0,0
\end{array}\right.
$$

