login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A221514 Number of 0..7 arrays of length n with each element differing from at least one neighbor by 2 or more, starting with 0. 1
0, 6, 31, 252, 1765, 12872, 92934, 672526, 4864004, 35184566, 254499831, 1840896185, 13315870072, 96318591951, 696707724524, 5039542943168, 36452864937683, 263676961336509, 1907272308179486, 13796001136950442 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Column 7 of A221515.

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = 3*a(n-1) +21*a(n-2) +58*a(n-3) +79*a(n-4) +32*a(n-5) +23*a(n-6) +4*a(n-7) +8*a(n-8).

Empirical g.f.: x^2*(6 + 13*x + 33*x^2 + 10*x^3 + 13*x^4 - 4*x^5 + 4*x^6) / (1 - 3*x - 21*x^2 - 58*x^3 - 79*x^4 - 32*x^5 - 23*x^6 - 4*x^7 - 8*x^8). - Colin Barker, Oct 18 2017

EXAMPLE

Some solutions for n=6

..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0

..3....6....5....3....3....6....7....3....2....2....2....7....7....2....2....4

..2....5....3....2....2....0....7....2....3....1....3....7....5....3....6....7

..4....7....0....4....0....6....0....6....5....4....7....1....3....5....1....4

..5....2....0....5....0....5....4....5....4....7....4....7....6....3....7....4

..3....5....7....1....4....7....1....0....2....0....2....4....0....0....3....1

CROSSREFS

Sequence in context: A299550 A208594 A318539 * A144576 A120107 A015462

Adjacent sequences:  A221511 A221512 A221513 * A221515 A221516 A221517

KEYWORD

nonn

AUTHOR

R. H. Hardin, Jan 18 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 07:59 EDT 2020. Contains 333079 sequences. (Running on oeis4.)