login
Hilltop maps: number of nX6 binary arrays indicating the locations of corresponding elements not exceeded by any horizontal or antidiagonal neighbor in a random 0..1 nX6 array
1

%I #4 Jan 17 2013 05:05:02

%S 31,1577,76055,3669101,177320895,8569227073,414116287743,

%T 20012580804813,967127817426727,46737411242830049,2258631763028702151,

%U 109150620595639469645,5274812021536486627631,254910523741875128561121

%N Hilltop maps: number of nX6 binary arrays indicating the locations of corresponding elements not exceeded by any horizontal or antidiagonal neighbor in a random 0..1 nX6 array

%C Column 6 of A221446

%H R. H. Hardin, <a href="/A221444/b221444.txt">Table of n, a(n) for n = 1..62</a>

%F Empirical: a(n) = 31*a(n-1) +737*a(n-2) +4637*a(n-3) +10078*a(n-4) +3446*a(n-5) -14110*a(n-6) -4246*a(n-7) -1045*a(n-8) +11211*a(n-9) -13907*a(n-10) +5385*a(n-11) -2232*a(n-12) +16*a(n-13) for n>15

%e Some solutions for n=3

%e ..0..1..1..0..1..0....0..1..0..0..1..1....1..0..1..1..1..1....1..1..1..1..1..1

%e ..0..1..1..1..1..0....1..1..0..1..1..1....1..0..1..0..0..1....1..1..1..1..1..1

%e ..1..1..1..0..0..1....0..1..0..0..1..1....1..0..1..1..1..0....0..1..1..0..1..1

%K nonn

%O 1,1

%A _R. H. Hardin_ Jan 17 2013