This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A221365 The simple continued fraction expansion of F(x) := product {n = 0..inf} (1 - x^(4*n+3))/(1 - x^(4*n+1)) when x = 1/2*(5 - sqrt(21)). 3
 1, 3, 1, 21, 1, 108, 1, 525, 1, 2523, 1, 12096, 1, 57963, 1, 277725, 1, 1330668, 1, 6375621, 1, 30547443, 1, 146361600, 1, 701260563, 1, 3359941221, 1, 16098445548, 1, 77132286525, 1, 369562987083, 1, 1770682648896, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The function F(x) := product {n = 0..inf} (1 - x^(4*n+3))/(1 - x^(4*n+1)) is analytic for |x| < 1. When x is a quadratic irrational of the form x = 1/2*(N - sqrt(N^2 - 4)), N an integer greater than 2, the real number F(x) has a predictable simple continued fraction expansion. The first examples of these expansions, for N = 2, 4, 6 and 8, are due to Hanna. See A174500 through A175503. The present sequence is the case N = 5. See also A221364 (N = 3), A221366 (N = 7) and A221367 (N = 9). If we denote the present sequence by [1, c(1), 1, c(2), 1, c(3), ...] then for k = 1, 2, ..., the simple continued fraction expansion of F({1/2*(5 - sqrt(21)}^k) is given by the sequence [1; c(k), 1, c(2*k), 1, c(3*k), 1, ...]. LINKS Index entries for linear recurrences with constant coefficients, signature (0,6,0,-6,0,1). FORMULA a(2*n-1) = (1/2*(5 + sqrt(21)))^n + (1/2*(5 - sqrt(21)))^n - 2 = 3*A054493(n); a(2*n) = 1. a(4*n+1) = 3*(A030221(n))^2; a(4*n-1) = 21*(A004254(n))^2. a(n) = 6*a(n-2)-6*a(n-4)+a(n-6). G.f.: -(x^4+3*x^3-5*x^2+3*x+1) / ((x-1)*(x+1)*(x^4-5*x^2+1)). [Colin Barker, Jan 20 2013] EXAMPLE F(1/2*(5 - sqrt(21)) = 1.25274 83510 08359 27965 ... = 1 + 1/(3 + 1/(1 + 1/(21 + 1/(1 + 1/(108 + 1/(1 + 1/(525 + ...))))))). F({1/2*(5 - sqrt(21)}^2) = 1.04545 84663 16495 30047 ... = 1 + 1/(21 + 1/(1 + 1/(525 + 1/(1 + 1/(12096 + 1/(1 + 1/(277725 + ...))))))). F({1/2*(5 - sqrt(21)}^3) = 1.00917 43188 83793 73068 ... = 1 + 1/(108 + 1/(1 + 1/(12096 + 1/(1 + 1/(1330668 + 1/(1 + 1/(146361600 + ...))))))). CROSSREFS A004254, A030221, A054493, A174500 (N = 4), A221364 (N = 3), A221366 (N = 7), A221369 (N = 9). Sequence in context: A045496 A024432 A016531 * A144279 A144280 A107717 Adjacent sequences:  A221362 A221363 A221364 * A221366 A221367 A221368 KEYWORD nonn,easy,cofr AUTHOR Peter Bala, Jan 15 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 00:14 EDT 2019. Contains 328025 sequences. (Running on oeis4.)