login
A221356
T(n,k)=Sum of neighbor maps: log base 2 of the number of nXk binary arrays indicating the locations of corresponding elements equal to the sum mod 2 of their horizontal, diagonal and antidiagonal neighbors in a random 0..1 nXk array
2
1, 1, 2, 3, 4, 3, 4, 6, 4, 4, 4, 8, 9, 8, 5, 6, 10, 12, 12, 9, 6, 7, 12, 12, 12, 15, 12, 7, 7, 14, 18, 20, 20, 18, 12, 8, 9, 16, 21, 24, 24, 24, 21, 16, 9, 10, 18, 22, 28, 30, 30, 28, 24, 17, 10, 10, 20, 27, 32, 35, 30, 31, 32, 27, 20, 11, 12, 22, 30, 32, 39, 42, 42, 40, 32, 30, 20, 12, 13, 24
OFFSET
1,3
COMMENTS
Table starts
..1..1..3..4..4..6..7..7..9.10.10.12.13.13.15.16.16.18
..2..4..6..8.10.12.14.16.18.20.22.24.26.28.30.32.34
..3..4..9.12.12.18.21.22.27.30.30.36.39.40.45.48
..4..8.12.12.20.24.28.32.32.40.44.48.52.52.60
..5..9.15.20.24.30.35.39.45.50.54.60.65.69
..6.12.18.24.30.30.42.48.54.60.66.72.72
..7.12.21.28.31.42.49.54.63.70.70.84
..8.16.24.32.40.48.56.58.72.80.88
..9.17.27.32.44.54.63.71.73
.10.20.30.40.50.60.70.80
.11.20.33.44.52.66.77
.12.24.36.48.60.72
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2) increment period 1: 1
k=2: a(n) = a(n-1) +a(n-4) -a(n-5) increment period 4: 3 0 4 1
k=3: a(n) = 2*a(n-1) -a(n-2) increment period 1: 3
k=4: a(n) = a(n-1) +a(n-5) -a(n-6) increment period 5: 4 4 0 8 4
k=5: a(n) = a(n-1) +a(n-8) -a(n-9) increment period 8: 6 2 8 4 6 1 9 4
k=6: a(n) = a(n-1) +a(n-7) -a(n-8) increment period 7: 6 6 6 6 0 12 6
k=7: a(n) = 2*a(n-1) -a(n-2) increment period 1: 7
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-3) -a(n-4) increment period 3: 0 2 1
n=2: a(n) = 2*a(n-1) -a(n-2) increment period 1: 2
n=3: a(n) = a(n-1) +a(n-6) -a(n-7) increment period 6: 1 5 3 0 6 3
n=4: a(n) = a(n-1) +a(n-5) -a(n-6) increment period 5: 4 4 0 8 4
n=5: a(n) = a(n-1) +a(n-3) -a(n-4) increment period 3: 4 6 5
n=6: a(n) = a(n-1) +a(n-7) -a(n-8) increment period 7: 6 6 6 6 0 12 6
EXAMPLE
Some solutions for n=3 k=4
..0..1..0..1....1..0..1..1....1..0..0..1....1..0..1..1....0..1..0..0
..0..1..0..1....1..0..1..1....1..0..0..0....1..0..1..1....1..0..1..0
..0..1..0..1....1..0..1..0....1..1..1..0....0..0..1..0....0..1..1..0
CROSSREFS
Sequence in context: A065651 A322567 A349049 * A177329 A360379 A253852
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jan 12 2013
STATUS
approved