login
A221193
Simple continued fraction expansion of product {k >= 0} (1 - 2*(N - sqrt(N^2-1))^(4*k+3))/(1 - 2*(N - sqrt(N^2-1))^(4*k+1)) at N = 3.
2
1, 1, 1, 32, 1, 97, 1, 1152, 1, 3361, 1, 39200, 1, 114241, 1, 1331712, 1, 3880897, 1, 45239072, 1, 131836321, 1, 1536796800, 1, 4478554081, 1, 52205852192, 1, 152139002497, 1, 1773462177792, 1, 5168247530881, 1, 60245508192800, 1, 175568277047521, 1
OFFSET
0,4
COMMENTS
Simple continued fraction expansion of product {k >= 0} (1 - 2*(N - sqrt(N^2-1))^(4*k+3))/(1 - 2*(N - sqrt(N^2-1))^(4*k+1)) at N = 3. For other cases see A221075 (N = 2), A221194 (N = 4) and A221195 (N = 5).
Denoting the present sequence by [1, c(1), 1, c(2), 1, c(3), 1, ...] then for n >= 0 the sequence [1, c(2*n+1), 1, c(2*(2*n+1)), 1, c(3*(2*n+1)), 1, ...] gives the simple continued fraction expansion of product {k >= 0} (1 - 2*((3 - 2*sqrt(2))^(2*n+1))^(4*k+3))/(1 - 2*((3 - 2*sqrt(2))^(2*n+1))^(4*k+1)).
FORMULA
a(4*n-1) = (3 + 2*sqrt(2))^(2*n) + (3 - 2*sqrt(2))^(2*n) - 2;
a(4*n+1) = 1/2*((3 + 2*sqrt(2))^(2*n+1) + (3 - 2*sqrt(2))^(2*n+1)) - 2; a(2*n) = 1.
G.f.: -(x^8+x^7+31*x^5-34*x^4+31*x^3+x+1) / ((x-1)*(x+1)*(x^2-2*x-1)*(x^2+2*x-1)*(x^4+6*x^2+1)). [Colin Barker, Jan 14 2013]
EXAMPLE
Product {k >= 0} (1 - 2*(3 - 2*sqrt(2))^(4*k+3))/(1 - 2*(3 - 2*sqrt(2))^(4*k+1)) = 1.50746 49374 34879 05211 ... = 1 + 1/(1 + 1/(1 + 1/(32 + 1/(1 + 1/(97 + ...))))).
CROSSREFS
Cf. A221075 (N = 2), A221194 (N = 4), A221195 (N = 5).
Sequence in context: A303323 A301910 A302154 * A103325 A351245 A373777
KEYWORD
nonn,easy,cofr
AUTHOR
Peter Bala, Jan 08 2013
EXTENSIONS
More terms from Colin Barker, Jan 14 2013
STATUS
approved