login
A221174
a(0)=-4, a(1)=5; thereafter a(n) = 2*a(n-1) + a(n-2).
7
-4, 5, 6, 17, 40, 97, 234, 565, 1364, 3293, 7950, 19193, 46336, 111865, 270066, 651997, 1574060, 3800117, 9174294, 22148705, 53471704, 129092113, 311655930, 752403973, 1816463876, 4385331725, 10587127326, 25559586377, 61706300080, 148972186537, 359650673154
OFFSET
0,1
COMMENTS
From Greg Dresden, May 08 2023: (Start)
For n >= 3, 2*a(n) is the number of ways to tile this figure of length n-1 with two colors of squares and one color of domino. For n=8, we have here the figure of length n-1=7, and it has 2*a(8) = 2728 different tilings.
._ _
|_|_|_ _ _ _ _
|_|_|_|_|_|_|_|
(End)
LINKS
José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012-2014.
FORMULA
a(n) = 13*A000129(n) - 4*A000129(n+1). - R. J. Mathar, Jan 14 2013
G.f.: -(13*x-4) / (x^2+2*x-1). - Colin Barker, Jul 10 2015
a(n) is the numerator of the continued fraction [4, 2, ..., 2, 4] with n-3 2's in the middle. For denominators, see A048654. - Greg Dresden and Tongjia Rao, Sep 02 2021
MATHEMATICA
LinearRecurrence[{2, 1}, {-4, 5}, 50] (* Paolo Xausa, Sep 02 2024 *)
PROG
(Haskell)
a221174 n = a221174_list !! n
a221174_list = -4 : 5 : zipWith (+)
(map (* 2) $ tail a221174_list) a221174_list
-- Reinhard Zumkeller, Jan 04 2013
(PARI) Vec(-(13*x-4)/(x^2+2*x-1) + O(x^50)) \\ Colin Barker, Jul 10 2015
CROSSREFS
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Jan 04 2013
STATUS
approved