The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A221171 The infinite generalized Fibonacci word p^[7]. 6
 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 3, 0, 3, 0, 3, 0, 3, 2, 3, 2, 3, 2, 3, 2, 3, 0, 3, 0, 3, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 2, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 LINKS José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012-2014. MAPLE # sigma01f implemented in A221166 A221171 := proc(n)         sigma01f(n, 7) ; end proc: # R. J. Mathar, Jul 09 2013 MATHEMATICA fibi[n_, i_] := fibi[n, i] = Which[n == 0, {0}, n == 1, Append[Table[0, {j, 1, i - 1}], 1], True, Join[fibi[n - 1, i], fibi[n - 2, i]]]; fibonni[n_, i_] := fibonni[n, i] = Module[{fn, Fn}, For[fn = 0, True, fn++, Fn = fibi[fn, i]; If[Length[Fn] >= n + 1 && Length[Fn] > i + 3, Return[Fn[[n + 1]]]]]]; fmorph[n_, i_] := If[fibonni[n, i] == 0, 2, 0]; sigma1f[n_, i_] := If[n == 0, 1, 1+Mod[Sum[fmorph[j, i], {j, 0, n-1}], 4]]; sigma01f[n_, i_] := If[n == 0, 0, Mod[Sum[sigma1f[j, i], {j, 0, n-1}], 4]]; a[n_] := sigma01f[n, 7]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 13 2017, after R. J. Mathar *) CROSSREFS Cf. A221166, A221167, A221168, A221169, A221170. Sequence in context: A107279 A078461 A280535 * A333688 A319610 A288739 Adjacent sequences:  A221168 A221169 A221170 * A221172 A221173 A221174 KEYWORD nonn AUTHOR N. J. A. Sloane, Jan 04 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 15 02:02 EDT 2020. Contains 336485 sequences. (Running on oeis4.)