login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A221170 The infinite generalized Fibonacci word p^[6]. 5
0, 1, 0, 1, 0, 1, 0, 3, 0, 3, 0, 3, 0, 3, 2, 3, 2, 3, 2, 3, 0, 3, 0, 3, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 3, 0, 3, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 3, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,8

LINKS

Table of n, a(n) for n=0..88.

José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012.

MAPLE

# sigma01f implemented in A221166

A221170 := proc(n)

    sigma01f(n, 6) ;

end proc: # R. J. Mathar, Jul 09 2013

MATHEMATICA

fibi[n_, i_] := fibi[n, i] = Which[n == 0, {0}, n == 1, Append[Table[0, {j, 1, i - 1}], 1], True, Join[fibi[n - 1, i], fibi[n - 2, i]]];

fibonni[n_, i_] := fibonni[n, i] = Module[{fn, Fn}, For[fn = 0, True, fn++, Fn = fibi[fn, i]; If[Length[Fn] >= n + 1 && Length[Fn] > i + 3, Return[Fn[[n + 1]]]]]];

fmorph[n_, i_] := If[fibonni[n, i] == 0, 2, 0];

sigma1f[n_, i_] := If[n == 0, 1, 1+Mod[Sum[fmorph[j, i], {j, 0, n-1}], 4]];

sigma01f[n_, i_] := If[n == 0, 0, Mod[Sum[sigma1f[j, i], {j, 0, n-1}], 4]];

a[n_] := sigma01f[n, 6];

Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 01 2017, after R. J. Mathar *)

CROSSREFS

Cf. A221166, A221167, A221168, A221169, A221171.

Sequence in context: A010674 A021037 A053387 * A307199 A141030 A221168

Adjacent sequences:  A221167 A221168 A221169 * A221171 A221172 A221173

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jan 04 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 07:03 EST 2019. Contains 329052 sequences. (Running on oeis4.)