login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A221153 The generalized Fibonacci words q_n^[2]. 4

%I

%S 1,13,133,13313,13313311,1331331131131,133133113113113313311,

%T 1331331131131133133113113113313313,

%U 1331331131131133133113113113313313311311331331331131133,13313311311311331331131131133133133113113313313311311331331331131131133133113113113313313

%N The generalized Fibonacci words q_n^[2].

%H Lars Blomberg, <a href="/A221153/b221153.txt">Table of n, a(n) for n = 0..14</a>

%H José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, <a href="http://arxiv.org/abs/1212.1368">A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake</a>, arXiv preprint arXiv:1212.1368 [cs.DM], 2012.

%t bar[a_List] := a /. {1 -> 3, 3 -> 1};

%t q[0, _] = {}; q[1, _] = {1}; q[2, i_] := If[EvenQ[i], Table[{1, 3}, {i/2}], Append[Table[{1, 3}, {(i-1)/2}], 1]] // Flatten;

%t q[n_, i_] := q[n, i] = If[EvenQ[i], If[Mod[n, 3] == 1, Join[q[n-1, i], q[n-2, i]], Join[q[n-1, i], q[n-2, i] // bar]], If[Mod[n, 3] == 0, Join[q[n-1, i], q[n-2, i]], Join[q[n-1, i], q[n-2, i] // bar]]];

%t a[n_] := q[n+1, 2] // FromDigits;

%t Table[a[n], {n, 0, 9}] (* _Jean-François Alcover_, Oct 02 2018 *)

%Y Cf. A221153, A221154, A221155, A221156.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Jan 04 2013

%E a(6)-a(9) from _Lars Blomberg_, Sep 04 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 22:32 EDT 2019. Contains 323411 sequences. (Running on oeis4.)