OFFSET
1,5
LINKS
F. G. Garvan, Higher-order spt functions, preprint.
F. G. Garvan, Higher-order spt functions, arXiv:1008.1207 [math.NT], 2010.
F. G. Garvan, Higher-order spt functions, Adv. Math. 228 (2011), no. 1, 241-265.
MATHEMATICA
om[4, p_List] := Module[{pu, m, f}, pu = Union[p]; m = Length[pu]; f[j_] := Count[p, pu[[j]]]; Binomial[f[1] + 3, 7] + Binomial[f[1] + 2, 5] Sum[Binomial[f[j] + 1, 2], {j, 2, m}] + Binomial[f[1] + 1, 3] Sum[Binomial[f[j] + 2, 4], {j, 2, m}] + f[1] Sum[Binomial[f[j] + 3, 6], {j, 2, m}] + Binomial[f[1] + 1, 3] Sum[Binomial[f[j] + 1, 2] Binomial[f[k] + 1, 2], {j, 2, m}, {k, j + 1, m}] + f[1] Sum[Binomial[f[j] + 2, 4] Binomial[f[k] + 1, 2], {j, 2, m}, {k, j + 1, m}] + f[1] Sum[Binomial[f[j] + 1, 2] Binomial[f[k] + 2, 4], {j, 2, m}, {k, j + 1, m}] + f[1] Sum[Binomial[f[j] + 1, 2] Binomial[f[k] + 1, 2] Binomial[f[r] + 1, 2], {j, 2, m}, {k, j + 1, m}, {r, k + 1, m}]];
spt[4, n_] := Sum[om[4, p], {p, IntegerPartitions[n]}];
Table[spt[4, n], {n, 1, 35}] (* Jinyuan Wang, Aug 08 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 02 2013
EXTENSIONS
More terms from Jinyuan Wang, Aug 08 2021
STATUS
approved