OFFSET
0,1
COMMENTS
Simple continued fraction expansion of product {n >= 0} {1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+3)}/{1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+1)} at m = 5. For other cases see A221073 (m = 2), A221074 (m = 3) and A221075 (m = 4).
If we denote the present sequence by [2; 16, 1, c(3), 1, c(4), 1, ...] then for k >= 1 the sequence [1; c(2*k+1), 1, c(2*(2*k+1)), 1, c(3*(2*k+1)), 1, ...] gives the simple continued fraction expansion of product {n >= 0} [1-sqrt(5)*{(sqrt(5)-2)^(2*k+1)}^(4*n+3)]/[1 - sqrt(5)*{(sqrt(5)-2)^(2*k+1)}^(4*n+1)]. An example is given below.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,1,0,18,0,-18,0,-1,0,1).
FORMULA
a(2*n) = 1 for n >= 1. For n >= 1 we have:
a(4*n - 3) = (sqrt(5) + 2)^(2*n) + (sqrt(5) - 2)^(2*n) - 2;
a(4*n - 1) = 1/sqrt(5)*{(sqrt(5) + 2)^(2*n + 1) + (sqrt(5) - 2)^(2*n + 1)} - 2.
O.g.f.: 2 + x^2/(1 - x^2) + 16*x*(1 + x^2)^2/(1 - 19*x^4 + 19*x^8 - x^12) = 2 + 16*x + x^2 + 32*x^3 + x^4 + 320*x^5 + ....
O.g.f.: (x^10-2*x^8-18*x^6+36*x^4-16*x^3+x^2-16*x-2) / ((x-1)*(x+1)*(x^4-4*x^2-1)*(x^4+4*x^2-1)). - Colin Barker, Jan 10 2014
EXAMPLE
Product {n >= 0} {1 - sqrt(5)*(sqrt(5) - 2)^(4*n+3)}/{1 - sqrt(5)*(sqrt(5) - 2)^(4*n+1)} = 2.05892 54859 32105 82744 ...
= 2 + 1/(16 + 1/(1 + 1/(32 + 1/(1 + 1/(320 + 1/(1 + 1/(608 + ...))))))).
Since (sqrt(5) - 2)^3 = 17*sqrt(5) - 38 we have the following simple continued fraction expansion:
product {n >= 0} {1 - sqrt(5)*(17*sqrt(5) - 38)^(4*n+3)}/{1 - sqrt(5)*(17*sqrt(5) - 38)^(4*n+1)} = 1.03030 31892 29728 52318 ... = 1 + 1/(32 + 1/(1 + 1/(5776 + 1/(1 + 1/(196416 + 1/(1 + 1/(33385280 + ...))))))).
MATHEMATICA
LinearRecurrence[{0, 1, 0, 18, 0, -18, 0, -1, 0, 1}, {2, 16, 1, 32, 1, 320, 1, 608, 1, 5776, 1}, 40] (* or *) Join[{2}, Riffle[LinearRecurrence[{1, 18, -18, -1, 1}, {16, 32, 320, 608, 5776}, 20], 1]] (* Harvey P. Dale, Jun 05 2023 *)
CROSSREFS
KEYWORD
nonn,easy,cofr
AUTHOR
Peter Bala, Jan 06 2013
STATUS
approved