login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A220956 (Binomial(2n, n) - binomial(2n - 2, n - 1)) (mod n^2) - n - 2. 1
-3, -4, 0, -4, 0, 16, 0, 20, 18, 24, 0, -10, 0, 32, 28, 100, 0, 148, 0, 198, 403, 48, 0, 82, 250, 56, 18, 138, 0, 752, 0, 644, 436, 72, 705, 950, 0, 80, 369, 1178, 0, 1468, 0, 1322, 448, 96, 0, 1930, 1029, 1104, 766, 146, 0, 2488, 1680, 478, 3058, 120, 0, 2674, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Conjecture: a(n) = 0 iff n is an odd prime.

a(n) < 0 if n = 1, 2, 4, 12, 924, 1287, 2002, 2145, 3366, 3640, ... .

a(n) is odd if n = 1, 21, 35, 39, 49, 63, 69, 85, 91, 119, 123, ... .

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10100

FORMULA

a(n) = A051924(n) (mod n^2) -n -2.

EXAMPLE

a(8)=20 since C(16,8) - C(14,7) (mod 64) = (12870 - 3432) (mod 64) = 9438 (mod 64) = 30 and 30 -8 -2 = 20.

MAPLE

A220956:=proc(q)

local n;

for n from 1 to q do  print(((binomial(2*n, n)-binomial(2*n-2, n-1)) mod n^2)-n-2); od; end:

A220956(1000); # Paolo P. Lava, Feb 26 2013

MATHEMATICA

f[n_] := Mod[Binomial[2 n, n] - Binomial[2 n - 2, n - 1], n^2] - n - 2; Array[f, 61]

PROG

(MAGMA) [(Binomial(2*n, n)-Binomial(2*n-2, n-1)) mod n^2-n-2: n in [1..70]]; // Bruno Berselli, Feb 21 2013

CROSSREFS

Cf. A051924, A000984.

Sequence in context: A346524 A139401 A110061 * A294967 A351045 A267183

Adjacent sequences:  A220953 A220954 A220955 * A220957 A220958 A220959

KEYWORD

sign,easy

AUTHOR

Gary Detlefs and Robert G. Wilson v, Feb 20 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 23:07 EDT 2022. Contains 353779 sequences. (Running on oeis4.)