The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A220853 Denominators of the fraction (30*n+7) * binomial(2*n,n)^2 * 2F1(1/2 - n/2; -n/2; 1, 64)/(-256)^n, where 2F1 is the hypergeometric function. 2
 1, 64, 16384, 1048576, 1073741824, 68719476736, 17592186044416, 1125899906842624, 4611686018427387904, 295147905179352825856, 75557863725914323419136, 4835703278458516698824704, 4951760157141521099596496896, 316912650057057350374175801344 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS From Alexander R. Povolotsky, Jan 25 2013: (Start) Sum_{n>=0} A220852(n)/A220853(n) = 24/Pi. In more direct way, sum_{k>=0} ((30*k+7) * binomial(2k,k)^2 * (2F1(1/2 - k/2, -k/2, 1, 64))/(-256)^k) = 24/Pi. Another version of this identity is: sum_{k>=0} ((30*k+7) * binomial(2k,k)^2 * (sum_{m=0,k/2} (binomial(k-m,m) * binomial(k,m) * 16^m))/(-256)^k) = 24/Pi. (end) LINKS G. C. Greubel, Table of n, a(n) for n = 0..415 Zhi-Wei Sun, List of conjectural series for powers of pi, Conjecture I1 page 19. FORMULA From Alexander R. Povolotsky, Feb 27 2013: (Start) Conjectures: a(n) = (A061549(n))^2. a(n) = 4^A120738(n). a(n) = 4^(log2(16^n/((n/2) + (1/2) + (sum_{k=0,n} (-(-1)^(binomial(n,k)))/2)))). (end) MAPLE A220853 := proc(n)     hypergeom([1/2-n/2, -n/2], [1], 64) ;     simplify(%) ;     (30*n+7)*binomial(2*n, n)^2*%/(-256)^n ;     denom(%) ; end proc: # R. J. Mathar, Jan 09 2013 MATHEMATICA Denominator[Table[(30*n + 7)*Binomial[2*n, n]^2*Hypergeometric2F1[(1 - n)/2, -n/2, 1, 64]/(-256)^n, {n, 0, 50}]] (* G. C. Greubel, Feb 20 2017 *) CROSSREFS Cf. A061549, A220852, A132714, A120738. Sequence in context: A264058 A123051 A064068 * A013781 A330482 A187407 Adjacent sequences:  A220850 A220851 A220852 * A220854 A220855 A220856 KEYWORD nonn,frac AUTHOR Alexander R. Povolotsky, Dec 23 2012 EXTENSIONS Wrong conjecture removed . - R. J. Mathar, Jun 17 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 20:00 EDT 2020. Contains 336202 sequences. (Running on oeis4.)