The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A220821 Number of rooted binary leaf-multilabeled trees with n leaves on the label set [4]. 2
 0, 0, 0, 15, 240, 2604, 24180, 207732, 1710108, 13739550, 108853512, 855732465, 6700902804, 52395480996, 409733313444, 3207687963129, 25155951725808, 197703130100532, 1557413160706764, 12298597436673711, 97359729090421320, 772615510913274126, 6145842794363133324 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS Andrew Howroyd, Table of n, a(n) for n = 1..200 V. P. Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. Southern Calif., 2012. MAPLE b:= proc(n, k) option remember; `if`(n<2, k*n, `if`(n::odd, 0,       (t-> t*(1-t)/2)(b(n/2, k)))+add(b(i, k)*b(n-i, k), i=1..n/2))     end: a:= n-> (k-> add((-1)^i*binomial(k, i)*b(n, k-i), i=0..k))(4): seq(a(n), n=1..30);  # Alois P. Heinz, Sep 07 2019 MATHEMATICA A[n_, k_] := A[n, k] = If[n < 2, k n, If[OddQ[n], 0, (# (1 - #)/2)&[A[n/2, k]]] + Sum[A[i, k] A[n - i, k], {i, 1, n/2}]]; T[n_, k_] := Sum[(-1)^i Binomial[k, i] A[n, k - i], {i, 0, k}]; a[n_] := T[n, 4]; Array[a, 23] (* Jean-François Alcover, Sep 02 2019, after Alois P. Heinz in A319541 *) CROSSREFS Column k=4 of A319541. Sequence in context: A157456 A097262 A158557 * A090411 A154806 A133199 Adjacent sequences:  A220818 A220819 A220820 * A220822 A220823 A220824 KEYWORD nonn AUTHOR N. J. A. Sloane, Dec 22 2012 EXTENSIONS Terms a(11) and beyond from Andrew Howroyd, Sep 23 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 13:00 EDT 2020. Contains 337272 sequences. (Running on oeis4.)