OFFSET
0,2
COMMENTS
The a(n) appear in the analysis of a sequence that is related to the Madhava-Gregory-Leibniz formula for Pi, see A166107.
FORMULA
Limit_{n -> infinity} A166107(2*n)/a(2*n) = Pi.
Limit_{n -> infinity} A166107(2*n+1)/a(2*n+1) = -Pi.
E.g.f.: 2F2(5/6,7/6; 1/3,2/3; 4*x^3) + 3*x*(2F2(5/6,7/6; 2/3,4/3; 4*x^3) + 5*x*2F2(7/6,11/6; 4/3,5/3; 4*x^3)/2). - Benedict W. J. Irwin, Oct 19 2016
MAPLE
MATHEMATICA
Table[(2*n + 1)!!/((Floor[(n - 1)/3]*2 + 1))!!, {n, 0, 20}] (* T. D. Noe, Feb 26 2013 *)
CoefficientList[Series[HypergeometricPFQ[{5/6, 7/6}, {1/3, 2/3}, 4 x^3] + 3/2 x (2 HypergeometricPFQ[{5/6, 7/6}, {2/3, 4/3}, 4 x^3] + 5x HypergeometricPFQ[{7/6, 11/6}, {4/3, 5/3}, 4 x^3]), {x, 0, 20}], x]*Range[0, 20]! (* Benedict W. J. Irwin, Oct 19 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Johannes W. Meijer, Feb 26 2013
STATUS
approved