login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A220504 Triangle read by rows: T(n,k) is the total number of appearances of k as the smallest part in all partitions of n. 5
1, 2, 1, 4, 0, 1, 7, 2, 0, 1, 12, 1, 0, 0, 1, 19, 4, 2, 0, 0, 1, 30, 3, 1, 0, 0, 0, 1, 45, 8, 1, 2, 0, 0, 0, 1, 67, 7, 4, 1, 0, 0, 0, 0, 1, 97, 15, 3, 1, 2, 0, 0, 0, 0, 1, 139, 15, 4, 1, 1, 0, 0, 0, 0, 0, 1, 195, 27, 8, 4, 1, 2, 0, 0, 0, 0, 0, 1, 272, 29, 8, 3, 1, 1, 0, 0, 0, 0, 0, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

In other words, T(n,k) is the total number of appearances of k in all partitions of n whose smallest part is k.

The sum of row n equals spt(n), the smallest part partition function (see A092269).

T(n,k) is also the sum of row k in the slice n of tetrahedron A209314.

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

EXAMPLE

The partitions of 6 with the smallest part in brackets are

..........................

.                      [6]

..........................

.                  [3]+[3]

..........................

.                   4 +[2]

.              [2]+[2]+[2]

..........................

.                   5 +[1]

.               3 + 2 +[1]

.               4 +[1]+[1]

.           2 + 2 +[1]+[1]

.           3 +[1]+[1]+[1]

.       2 +[1]+[1]+[1]+[1]

.  [1]+[1]+[1]+[1]+[1]+[1]

..........................

There are 19 smallest parts of size 1. Also there are four smallest parts of size 2. Also there are two smallest parts of size 3. There are no smallest part of size 4 or 5. Finally there is only one smallest part of size 6. So row 6 gives 19, 4, 2, 0, 0, 1. The sum of row 6 is 19+4+2+0+0+1 = A092269(6) = 26.

Triangle begins:

1;

2,    1;

4,    0, 1;

7,    2, 0, 1;

12,   1, 0, 0, 1;

19,   4, 2, 0, 0, 1;

30,   3, 1, 0, 0, 0, 1;

45,   8, 1, 2, 0, 0, 0, 1;

67,   7, 4, 1, 0, 0, 0, 0, 1;

97,  15, 3, 1, 2, 0, 0, 0, 0, 1;

139, 15, 4, 1, 1, 0, 0, 0, 0, 0, 1;

195, 27, 8, 4, 1, 2, 0, 0, 0, 0, 0, 1;

272, 29, 8, 3, 1, 1, 0, 0, 0, 0, 0, 0, 1;

MAPLE

b:= proc(n, i) option remember; local j, r; if n=0 or i<1 then 0

      else `if`(irem(n, i, 'r')=0, [0$(i-1), r], []); for j from 0

      to n/i do zip((x, y)->x+y, %, [b(n-i*j, i-1)], 0) od; %[] fi

    end:

T:= n-> b(n, n):

seq(T(n), n=1..20);  # Alois P. Heinz, Jan 20 2013

MATHEMATICA

b[n_, i_] := b[n, i] = Module[{j, q, r, pc}, If [n == 0 || i<1, 0, {q, r} = QuotientRemainder[n, i]; pc = If[r == 0, Append[Array[0&, i-1], q], {}]; For[j = 0, j <= n/i, j++, pc = Plus @@ PadRight[{pc, b[n-i*j, i-1]}]]; pc]]; T[n_] := b[n, n]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-Fran├žois Alcover, Jan 30 2014, after Alois P. Heinz *)

CROSSREFS

Columns 1-3: A000070, A087787, A174455.

Row sums give A092269.

Cf. A026794, A182703, A209314.

Sequence in context: A091604 A200192 A137629 * A087569 A048614 A001442

Adjacent sequences:  A220501 A220502 A220503 * A220505 A220506 A220507

KEYWORD

nonn,tabl

AUTHOR

Omar E. Pol, Jan 19 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 19:04 EDT 2020. Contains 337388 sequences. (Running on oeis4.)