The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A220504 Triangle read by rows: T(n,k) is the total number of appearances of k as the smallest part in all partitions of n. 5
 1, 2, 1, 4, 0, 1, 7, 2, 0, 1, 12, 1, 0, 0, 1, 19, 4, 2, 0, 0, 1, 30, 3, 1, 0, 0, 0, 1, 45, 8, 1, 2, 0, 0, 0, 1, 67, 7, 4, 1, 0, 0, 0, 0, 1, 97, 15, 3, 1, 2, 0, 0, 0, 0, 1, 139, 15, 4, 1, 1, 0, 0, 0, 0, 0, 1, 195, 27, 8, 4, 1, 2, 0, 0, 0, 0, 0, 1, 272, 29, 8, 3, 1, 1, 0, 0, 0, 0, 0, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS In other words, T(n,k) is the total number of appearances of k in all partitions of n whose smallest part is k. The sum of row n equals spt(n), the smallest part partition function (see A092269). T(n,k) is also the sum of row k in the slice n of tetrahedron A209314. LINKS Alois P. Heinz, Rows n = 1..141, flattened EXAMPLE The partitions of 6 with the smallest part in brackets are .......................... .                      [6] .......................... .                  [3]+[3] .......................... .                   4 +[2] .              [2]+[2]+[2] .......................... .                   5 +[1] .               3 + 2 +[1] .               4 +[1]+[1] .           2 + 2 +[1]+[1] .           3 +[1]+[1]+[1] .       2 +[1]+[1]+[1]+[1] .  [1]+[1]+[1]+[1]+[1]+[1] .......................... There are 19 smallest parts of size 1. Also there are four smallest parts of size 2. Also there are two smallest parts of size 3. There are no smallest part of size 4 or 5. Finally there is only one smallest part of size 6. So row 6 gives 19, 4, 2, 0, 0, 1. The sum of row 6 is 19+4+2+0+0+1 = A092269(6) = 26. Triangle begins: 1; 2,    1; 4,    0, 1; 7,    2, 0, 1; 12,   1, 0, 0, 1; 19,   4, 2, 0, 0, 1; 30,   3, 1, 0, 0, 0, 1; 45,   8, 1, 2, 0, 0, 0, 1; 67,   7, 4, 1, 0, 0, 0, 0, 1; 97,  15, 3, 1, 2, 0, 0, 0, 0, 1; 139, 15, 4, 1, 1, 0, 0, 0, 0, 0, 1; 195, 27, 8, 4, 1, 2, 0, 0, 0, 0, 0, 1; 272, 29, 8, 3, 1, 1, 0, 0, 0, 0, 0, 0, 1; MAPLE b:= proc(n, i) option remember; local j, r; if n=0 or i<1 then 0       else `if`(irem(n, i, 'r')=0, [0\$(i-1), r], []); for j from 0       to n/i do zip((x, y)->x+y, %, [b(n-i*j, i-1)], 0) od; %[] fi     end: T:= n-> b(n, n): seq(T(n), n=1..20);  # Alois P. Heinz, Jan 20 2013 MATHEMATICA b[n_, i_] := b[n, i] = Module[{j, q, r, pc}, If [n == 0 || i<1, 0, {q, r} = QuotientRemainder[n, i]; pc = If[r == 0, Append[Array[0&, i-1], q], {}]; For[j = 0, j <= n/i, j++, pc = Plus @@ PadRight[{pc, b[n-i*j, i-1]}]]; pc]]; T[n_] := b[n, n]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Jan 30 2014, after Alois P. Heinz *) CROSSREFS Columns 1-3: A000070, A087787, A174455. Row sums give A092269. Cf. A026794, A182703, A209314. Sequence in context: A091604 A200192 A137629 * A087569 A048614 A001442 Adjacent sequences:  A220501 A220502 A220503 * A220505 A220506 A220507 KEYWORD nonn,tabl AUTHOR Omar E. Pol, Jan 19 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 19:04 EDT 2020. Contains 337388 sequences. (Running on oeis4.)