This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A220486 a(n) = n(p(n)-d(n)): sum of all of parts of all partitions of n with at least one distinct part. 0
 0, 0, 3, 8, 25, 42, 91, 144, 243, 380, 594, 852, 1287, 1834, 2580, 3616, 5015, 6822, 9272, 12420, 16548, 21956, 28819, 37608, 48875, 63232, 81162, 103936, 132327, 167880, 212040, 266976, 334587, 418404, 520765, 646848, 800495, 988418, 1216059, 1493200 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS FORMULA a(n) = n*(A000041(n) - A000005(n)) = A066186(n) - A038040(n) =  n*A144300(n). EXAMPLE For n = 6 ----------------------------------------------------- Partitions of 6            Value ----------------------------------------------------- 6 .......................... 0  (all parts are equal) 5 + 1 ...................... 6 4 + 2 ...................... 6 4 + 1 + 1 .................. 6 3 + 3 ...................... 0  (all parts are equal) 3 + 2 + 1 .................. 6 3 + 1 + 1 + 1 .............. 6 2 + 2 + 2 .................. 0  (all parts are equal) 2 + 2 + 1 + 1 .............. 6 2 + 1 + 1 + 1 + 1 .......... 6 1 + 1 + 1 + 1 + 1 + 1 ...... 0  (all parts are equal) ----------------------------------------------------- The sum of the values is    42 On the other hand p(6) = A000041(6) = 11 and d(6) = A000005(6) = 4, so a(6) = 6*(p(6) - d(6)) = 6*(11 - 4) = 6*7 = 42. CROSSREFS Cf. A000005, A000041, A038040, A066186, A144300, A220477. Sequence in context: A102919 A102476 A302109 * A180380 A057420 A076049 Adjacent sequences:  A220483 A220484 A220485 * A220487 A220488 A220489 KEYWORD nonn,easy AUTHOR Omar E. Pol, Jan 18 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 19 23:02 EDT 2019. Contains 321343 sequences. (Running on oeis4.)