

A220455


Number of ways to write n=x+y (x>0, y>0) with 3x2, 3x+2 and 2xy+1 all prime


6



0, 0, 0, 1, 1, 2, 0, 2, 3, 2, 1, 2, 1, 1, 4, 4, 1, 2, 2, 3, 3, 2, 2, 5, 1, 4, 1, 1, 5, 4, 1, 2, 5, 5, 3, 8, 3, 6, 5, 5, 4, 4, 2, 4, 5, 3, 1, 8, 3, 4, 4, 1, 2, 8, 6, 3, 4, 5, 4, 4, 7, 1, 3, 6, 5, 7, 3, 3, 8, 2, 4, 5, 2, 6, 10, 7, 1, 5, 5, 6, 8, 6, 4, 5, 5, 7, 5, 4, 4, 11, 4, 5, 5, 5, 6, 6, 3, 1, 12, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,6


COMMENTS

Conjecture: a(n)>0 for all n>7.
This has been verified for n up to 10^8. It implies that there are infinitely many cousin primes.
ZhiWei Sun also made some other similar conjectures, e.g., he conjectured that any integer n>17 can be written as x+y (x>0, y>0) with 2x3, 2x+3 and 2xy+1 all prime, and each integer n>28 can be written as x+y (x>0, y>0) with 2x+1, 2y1 and 2xy+1 all prime.


LINKS

ZhiWei Sun, Table of n, a(n) for n = 1..10000
ZhiWei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588.


EXAMPLE

a(25)=1 since 25=13+12 with 3*132, 3*13+2 and 2*13*12+1=313 all prime.


MATHEMATICA

a[n_]:=a[n]=Sum[If[PrimeQ[3k2]==True&&PrimeQ[3k+2]==True&&PrimeQ[2k(nk)+1]==True, 1, 0], {k, 1, n1}]
Do[Print[n, " ", a[n]], {n, 1, 1000}]
apQ[{a_, b_}]:=AllTrue[{3a2, 3a+2, 2a*b+1}, PrimeQ]; Table[Count[Flatten[ Permutations/@ IntegerPartitions[n, {2}], 1], _?(apQ[#]&)], {n, 100}] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jun 09 2018 *)


CROSSREFS

Cf. A220431, A023200, A046132, A218867, A219055, A220419, A220413, A220272, A219842, A219864, A219923.
Sequence in context: A272800 A104513 A305610 * A208295 A285721 A214292
Adjacent sequences: A220452 A220453 A220454 * A220456 A220457 A220458


KEYWORD

nonn


AUTHOR

ZhiWei Sun, Dec 15 2012


STATUS

approved



