login
Define u(n) as in A220448; then a(1)=1, thereafter a(n) = u(n)*a(n-1).
5

%I #17 May 23 2014 11:14:37

%S 1,1,-10,10,190,-730,-6620,55900,365300,-5864300,-28269800,839594600,

%T 2691559000,-159300557000,-238131478000,38894192662000,

%U -15194495654000,-11911522255750000,29697351895900000,4477959179352100000,-21683886333440500000,-2029107997508660900000,15145164178973569000000

%N Define u(n) as in A220448; then a(1)=1, thereafter a(n) = u(n)*a(n-1).

%C The reason for including this sequence as well as A105750 is that the values of this sequence modulo various primes are of interest (see Moll).

%H N. J. A. Sloane, <a href="/A220449/b220449.txt">Table of n, a(n) for n = 1..100</a>

%H V. H. Moll, <a href="http://www.tulane.edu/~vhm/papers_html/xn-final.pdf">An arithmetic conjecture on a sequence of arctangent sums</a>, 2012. See f_n.

%F A105750(n) = (-1)^(n+1)*a(n).

%F Define x(n) as in A220447. Then x(n) = (a(n+1)+a(n))/((n+1)*a(n)).

%p x:=proc(n) option remember;

%p if n=1 then 1 else (x(n-1)+n)/(1-n*x(n-1)); fi; end;

%p f:=proc(n) option remember; global x;

%p if n = 1 then 1 else n*x(n-1)*f(n-1)-f(n-1); fi; end;

%p [seq(f(n),n=1..30)];

%Y Cf. A105750, A220446, A220447, A220448, A220450, A220451.

%K sign

%O 1,3

%A _N. J. A. Sloane_, Dec 22 2012