The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A220422 Numerators of coefficients of an expansion of the logarithm of the Catalan numbers. 3
 5, -1, 65, -1381, 50525, -2702761, 199360985, -19391512141, 2404879675445, -370371188237521, 69348874393137905, -15514534163557086901, 4087072509293123892365, -1252259641403629865468281, 441543893249023104553682825, -177519391579539289436664789661 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Let C(n) denote the Catalan numbers A000108 and S(n) = Sum_{k>=1} a(k)/(2*k*(4*n+3)^(2*k)) then log(C(n)) = (1/2)*(n*log(16)-3*log(n+3/4)-log(Pi)+S(n)). REFERENCES Y. L. Luke, The Special Functions and their Approximations, Vol. 1. Academic Press, 1969. LINKS J. L. Fields, A note on the asymptotic expansion of a ratio of gamma functions, Proc. Edinburgh Math. Soc. 15 (1) (1966), 43-45. D. Kessler and J. Schiff, The asymptotics of factorials, binomial coefficients and Catalan numbers. April 2006. FORMULA a(n) = -4^(2*n+1)*B_{2*n+1}(-1/4)/(2*n+1), B_{n}(x) the Bernoulli polynomials. a(n) = 4 - E(2*n), E the Euler numbers A122045. EXAMPLE Let N = 4*n+3 then log(C(n)) = (n*log(16)-3*log(n+3/4)-log(Pi))/2+a(1)/(4*N^2)+a(2)/(8*N^4)+a(3)/(12*N^6)+a(4)/(16*N^8)+O(1/N^10). MAPLE A220422 := n -> 4 - euler(2*n): PROG (Sage) def A220422Generator() :     A = {-1:0, 0:1};     k = 0; e = 1; i = 0; m = 0     while True:         An = 0; A[k + e] = 0; e = -e         for j in (0..i) :             An += A[k]; A[k] = An; k += e         if e < 0 :             yield 4 - A[-m]*(-1)^m             m += 1         i += 1 A220422 = A220422Generator() [next(A220422) for n in (1..16)] CROSSREFS Cf. A000108, A122045. The exponential version is A220002. Sequence in context: A246006 A050970 A138548 * A251596 A294258 A294260 Adjacent sequences:  A220419 A220420 A220421 * A220423 A220424 A220425 KEYWORD sign AUTHOR Peter Luschny, Dec 28 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 3 20:29 EDT 2020. Contains 333199 sequences. (Running on oeis4.)