login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A220418 Express 1 - x - x^2 - x^3 - x^4 - ... as product (1 + g(1)*x) * (1 + g(2)*x^2) *(1 + g(3)*x^3) * ... and use a(n) = - g(n). 27
1, 1, 2, 3, 6, 8, 18, 27, 54, 84, 186, 296, 630, 1008, 2106, 3711, 7710, 12924, 27594, 48528, 97902, 173352, 364722, 647504, 1340622, 2382660, 4918482, 9052392, 18512790, 33361776, 69273666, 127198287, 258155910, 475568220, 981288906, 1814542704, 3714566310 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
This is the PPE (power product expansion) of A153881 (with offset 0).
When p is prime, a(p) = (2^p-2)/p (A064535).
From Petros Hadjicostas, Oct 04 2019: (Start)
This sequence appears as an example in Gingold and Knopfmacher (1995) starting at p. 1223.
In Section 3 of Gingold and Knopfmacher (1995), it is proved that, if f(z) = Product_{n >= 1} (1 + g(n))*z^n = 1/(Product_{n >= 1} (1 - h(n))*z^n), then g(2*n - 1) = h(2*n - 1) and Sum_{d|n} (1/d)*h(n/d)^d = -Sum_{d|n} (1/d)*(-g(n/d))^d. The same results were proved more than ten years later by Alkauskas (2008, 2009). [If we let a(n) = -g(n), then Alkauskas works with f(z) = Product_{n >= 1} (1 - a(n))*z^n; i.e., a(2*n - 1) = -h(2*n - 1) etc.]
The PPE of 1/(1 - x - x^2 - x^3 - x^4 - ...) is given in A290261, which is also studied in Gingold and Knopfmacher (1995, p. 1234).
(End)
The number of terms in the Zassenhaus formula exponent of order n, as computed by the algorithm by Casas, Murua & Nadinic, is equal to a(n) at least for n = 2..24. - Andrey Zabolotskiy, Apr 09 2023
LINKS
Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
Fernando Casas, Ander Murua and Mladen Nadinic, Efficient computation of the Zassenhaus formula, Computer Physics Communications, 183 (2012), 2386-2391; arXiv:1204.0389 [math-ph], 2012.
H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
FORMULA
g(1) = -1 and for k > 1, g(k) satisfies Sum_{d|k} (1/d)*(-g(k/d))^d = (2^k - 1)/k, where a(k) = -g(k). - Gevorg Hmayakyan, Jun 05 2016 [Corrected by Petros Hadjicostas, Oct 04 2019. See p. 1224 in Gingold and Knopfmacher (1995).]
From Petros Hadjicostas, Oct 04 2019: (Start)
a(2*n - 1) = A290261(2*n - 1) for n >= 1 because A290261 gives the PPE of 1/(1 - x - x^2 - x^3 - ...) = (1 - x)/(1 - 2*x).
Define (A(m,n): n,m >= 1) by A(m=1,n) = -1 for n >= 1, A(m,n) = 0 for m > n >= 1 (upper triangular), and A(m,n) = A(m-1,n) - A(m-1,m-1) * A(m,n-m+1) for n >= m >= 2. Then a(n) = A(n,n). [Theorem 3 in Gingold et al. (1988).]
(End)
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i<1, 1,
b(n, i-1)+a(i)*b(n-i, min(n-i, i)))
end:
a:= proc(n) option remember; 2^n-b(n, n-1) end:
seq(a(n), n=1..40); # Alois P. Heinz, Jun 22 2018
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0 || i < 1, 1, b[n, i - 1] + a[i]*b[n - i, Min[n - i, i]]];
a[n_] := a[n] = 2^n - b[n, n - 1] ;
Array[a, 40] (* Jean-François Alcover, Jul 09 2018, after Alois P. Heinz *)
PROG
(PARI) a(m) = {default(seriesprecision, m+1); gk = vector(m); pol = 1 + sum(n=1, m, -x^n); gk[1] = polcoeff( pol, 1); for (k=2, m, pol = taylor(pol/(1+gk[k-1]*x^(k-1)), x); gk[k] = polcoeff(pol, k, x); ); for (k=1, m, print1(-gk[k], ", "); ); }
CROSSREFS
Sequence in context: A110448 A005508 A022542 * A064450 A217137 A248824
KEYWORD
nonn
AUTHOR
Michel Marcus, Dec 14 2012
EXTENSIONS
Name edited by Petros Hadjicostas, Oct 04 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 17 23:23 EDT 2024. Contains 371767 sequences. (Running on oeis4.)