%I #38 Feb 16 2022 18:24:51
%S 1,2,9,4,25,216,7,64,729,10000,11,144,2197,38416,759375,16,289,5832,
%T 130321,3200000,85766121,22,529,13824,390625,11881376,387420489,
%U 13492928512,29,900,29791,1048576,39135393,1544804416,64339296875,2821109907456
%N Table T(n,k) = ((n+k-1)*(n+k-2)/2+n)^n, n,k >0 read by antidiagonals.
%C The first column is A000124.
%H Boris Putievskiy, <a href="/A220416/b220416.txt">Rows n = 1..30 of triangle, flattened</a>
%H Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations Integer Sequences And Pairing Functions</a>, arXiv:1212.2732 [math.CO], 2012.
%F As a linear array, the sequence is a(n) = n^A002260(n) or
%F a(n) = n^(n-t(t+1)/2), where t=floor[(-1+sqrt(8*n-7))/2].
%e The start of the sequence as triangle array is:
%e 1;
%e 2,9;
%e 4,25,216;
%e 7,64,729,10000;
%e 11, 144, 2197, 38416, 759375;
%e ...
%o (Python)
%o t=int((math.sqrt(8*n-7) - 1)/ 2)
%o m=n**(n-t*(t+1)/2)
%Y Cf. A002260, A000124.
%K nonn,tabl
%O 1,2
%A _Boris Putievskiy_, Dec 14 2012