login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A220377 Number of partitions of n into three distinct and mutually relatively prime parts. 36
1, 0, 2, 1, 3, 1, 6, 1, 7, 3, 7, 3, 14, 3, 15, 6, 14, 6, 25, 6, 22, 10, 25, 9, 42, 8, 34, 15, 37, 15, 53, 13, 48, 22, 53, 17, 78, 17, 65, 30, 63, 24, 99, 24, 88, 35, 84, 30, 126, 34, 103, 45, 103, 38, 166, 35, 124, 57, 128, 51, 184, 44, 150, 67, 172, 52, 218 (list; graph; refs; listen; history; text; internal format)
OFFSET

6,3

COMMENTS

The Heinz numbers of these partitions are the intersection of A005117 (strict), A014612 (triples), and A302696 (coprime). - Gus Wiseman, Oct 14 2020

LINKS

Fausto A. C. Cariboni, Table of n, a(n) for n = 6..10000 (terms 6..1000 from Seiichi Manyama)

FORMULA

a(n > 2) = A307719(n) - 1. - Gus Wiseman, Oct 15 2020

EXAMPLE

For n=10 we have three such partitions: 1+2+7, 1+4+5 and 2+3+5.

From Gus Wiseman, Oct 14 2020: (Start)

The a(6) = 1 through a(20) = 15 triples (empty column indicated by dot, A..H = 10..17):

321  .  431  531  532  731  543  751  743  753  754  971  765  B53  875

        521       541       651       752  951  853  B51  873  B71  974

                  721       732       761  B31  871  D31  954  D51  A73

                            741       851       952       972       A91

                            831       941       B32       981       B54

                            921       A31       B41       A71       B72

                                      B21       D21       B43       B81

                                                          B52       C71

                                                          B61       D43

                                                          C51       D52

                                                          D32       D61

                                                          D41       E51

                                                          E31       F41

                                                          F21       G31

                                                                    H21

(End)

MATHEMATICA

Table[Length@Select[ IntegerPartitions[ n, {3}], #[[1]] != #[[2]] != #[[3]] && GCD[#[[1]], #[[2]]] == 1 && GCD[#[[1]], #[[3]]] == 1 && GCD[#[[2]], #[[3]]] == 1 &], {n, 6, 100}]

Table[Count[IntegerPartitions[n, {3}], _?(CoprimeQ@@#&&Length[ Union[#]] == 3&)], {n, 6, 100}] (* Harvey P. Dale, May 22 2020 *)

PROG

(PARI) a(n)=my(P=partitions(n)); sum(i=1, #P, #P[i]==3&&P[i][1]<P[i][2]&&P[i][2]<P[i][3]&&gcd(P[i][1], P[i][2])==1&&gcd(P[i][1], P[i][3])==1&&gcd(P[i][2], P[i][3])==1) \\ Charles R Greathouse IV, Dec 14 2012

CROSSREFS

Cf. A015617, A300815.

A023022 is the 2-part version.

A101271 is the relative prime instead of pairwise coprime version.

A220377*6 is the ordered version.

A305713 counts these partitions of any length, with Heinz numbers A302797.

A307719 is the non-strict version.

A337461 is the non-strict ordered version.

A337563 is the case with no 1's.

A337605 is the pairwise non-coprime instead of pairwise coprime version.

A001399(n-6) counts strict 3-part partitions, with Heinz numbers A007304.

A008284 counts partitions by sum and length, with strict case A008289.

A318717 counts pairwise non-coprime strict partitions.

A326675 ranks pairwise coprime sets.

A327516 counts pairwise coprime partitions.

A337601 counts 3-part partitions whose distinct parts are pairwise coprime.

Cf. A000217, A007360, A023023, A051424, A078374, A087087, A302696, A333227, A337485, A337561.

Sequence in context: A084419 A119606 A034850 * A329696 A145969 A140352

Adjacent sequences:  A220374 A220375 A220376 * A220378 A220379 A220380

KEYWORD

nonn

AUTHOR

Carl Najafi, Dec 13 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 06:59 EDT 2021. Contains 343125 sequences. (Running on oeis4.)