login
A220359
Decimal expansion of the root of the equation (1-r)^(2*r-1) = r^(2*r).
16
7, 0, 3, 5, 0, 6, 0, 7, 6, 4, 3, 0, 6, 6, 2, 4, 3, 0, 9, 6, 9, 2, 9, 6, 6, 1, 6, 2, 1, 7, 7, 7, 0, 9, 5, 2, 1, 3, 2, 4, 6, 8, 4, 5, 7, 4, 2, 4, 2, 8, 1, 5, 5, 5, 5, 8, 6, 2, 1, 5, 7, 1, 6, 5, 1, 0, 5, 1, 2, 3, 0, 6, 0, 0, 3, 9, 9, 4, 0, 1, 4, 4, 9, 5, 2, 5, 4, 5, 6, 8, 0, 4, 6, 0, 5, 7, 3, 1, 5, 1, 9, 8, 5, 4, 4, 8, 3
OFFSET
0,1
COMMENTS
Constant is associated with A167008, A219206 and A219207.
EXAMPLE
0.70350607643066243...
MAPLE
Digits:= 140:
v:= convert(fsolve( (1-r)^(2*r-1) = r^(2*r), r=1/2), string):
seq(parse(v[n+2]), n=0..120); # Alois P. Heinz, Dec 12 2012
MATHEMATICA
RealDigits[r/.FindRoot[(1-r)^(2*r-1)==r^(2*r), {r, 1/2}, WorkingPrecision->250], 10, 200][[1]]
PROG
(PARI) solve(x=.7, 1, (1-x)^(2*x-1) - x^(2*x)) \\ Charles R Greathouse IV, Apr 25 2016
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Dec 12 2012
STATUS
approved