login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A220338 A modified Engel expansion for 8*sqrt(6) - 19. 9
2, 6, 10, 2, 50, 98, 2, 4802, 9602, 2, 46099202, 92198402, 2, 4250272665676802, 8500545331353602, 2, 36129635465198759610694779187202, 72259270930397519221389558374402, 2, 2610701117696295981568349760414651575095962187244375364404428802 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

For a brief description of the modified Engel expansion of a real number see A220335.

Let p >= 2 be an integer and set Q(p) = (p - 1)*sqrt(p^2 - 1) - (p^2 - p - 1), so Q(5) = 8*sqrt(6) - 19. Iterating the identity Q(p) = 1/2 + 1/(2*(p+1)) + 1/(2*(p+1)*(2*p)) + 1/(2*(p+1)*(2*p))*Q(2*p^2-1) leads to a representation for Q(p) as an infinite series of unit fractions. The sequence of denominators of these unit fractions can be used to find the modified Engel expansion of Q(p). For further details see the Bala link. The present sequence is the case p = 5. For other cases see A220335 (p = 2), A220336 (p = 3) and A220337 (p = 4).

LINKS

Table of n, a(n) for n=1..20.

P. Bala, A modified Engel expansion for certain quadratic irrationals

S. Crowley, Integral transforms of the harmonic sawtooth map, the Riemann zeta function, fractal strings, and a finite reflection formula, arXiv:1210.5652 [math.NT]

Wikipedia, Engel Expansion

FORMULA

Define the harmonic sawtooth map h(x) := floor(1/x)*(x*ceiling(1/x) - 1). Let x = 8*sqrt(6) - 19. Then a(1) = ceiling(1/x) and for n >= 2, a(n) = floor(1/h^(n-2)(x))*ceiling(1/h^(n-1)(x)), where h^(n)(x) denotes the n-th iterate of the map h(x), with the convention h^(0)(x) = x.

a(3*n+2) = 1/2*{2 + (5 + 2*sqrt(6))^(2^n) + (5 - 2*sqrt(6))^(2^n)} and

a(3*n+3) = {(5 + 2*sqrt(6))^(2^n) + (5 - 2*sqrt(6))^(2^n)} both for n >= 0.

For n >= 0, a(3*n+1) = 2. For n >= 1, a(3*n+2) = 2*A084765(n)^2 and a(3*n+3) = 4*A085765(n)^2 - 2.

Recurrence equations:

For n >= 1, a(3*n+2) = 2*{a(3*n-1)^2 - 2*a(3*n-1) + 1} and

a(3*n+3) = 2*a(3*n+2) - 2.

Put P(n) = product(k = 0..n} a(k). Then we have the infinite Egyptian fraction representation 8*sqrt(6) - 19 = sum {n >=0} 1/P(n) = 1/2 + 1/(2*6) + 1/(2*6*10) + 1/(2*6*10*2) + 1/(2*6*10*2*50) + ....

CROSSREFS

Cf. A084765, A220335 (p = 2), A220336 (p = 3), A220337 (p = 4).

Sequence in context: A244060 A236106 A095105 * A052194 A320383 A073662

Adjacent sequences:  A220335 A220336 A220337 * A220339 A220340 A220341

KEYWORD

nonn,easy

AUTHOR

Peter Bala, Dec 12 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 22 08:33 EST 2019. Contains 329389 sequences. (Running on oeis4.)