login
A220235
a(n) = (2^n + 3^n) modulo n.
3
0, 1, 2, 1, 0, 1, 5, 1, 8, 3, 5, 1, 5, 13, 5, 1, 5, 1, 5, 17, 14, 13, 5, 1, 0, 13, 26, 13, 5, 13, 5, 1, 2, 13, 30, 1, 5, 13, 35, 17, 5, 37, 5, 9, 35, 13, 5, 1, 12, 23, 35, 45, 5, 1, 0, 41, 35, 13, 5, 37, 5, 13, 35, 1, 15, 1, 5, 29, 35, 13, 5, 1, 5, 13, 50
OFFSET
1,3
COMMENTS
a(n) = (A015910(n) + A066601(n)) mod n.
a(n) = 0 at n = 1, 5, 25, 55, 125, 275, 605, 625, ... (A045576).
MATHEMATICA
Table[Mod[2^n + 3^n, n], {n, 100}]
CROSSREFS
Cf. A015910 (2^n mod n), A066601 (3^n mod n), A045576 (n|(2^n + 3^n)).
Sequence in context: A210872 A360753 A292973 * A066603 A263339 A244372
KEYWORD
nonn
AUTHOR
Zak Seidov, Dec 08 2012
STATUS
approved