%I
%S 4,10,36,89,182,333,567,918,1431,2164,3190,4599,6500,9023,12321,16572,
%T 21981,28782,37240,47653,60354,75713,94139,116082,142035,172536,
%U 208170,249571,297424,352467,415493,487352,568953,661266,765324,882225,1013134
%N Number of 2 X n arrays of the minimum value of corresponding elements and their horizontal, vertical or diagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..3 2 X n array.
%C Row 2 of A220204.
%H R. H. Hardin, <a href="/A220205/b220205.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (1/60)*n^5  (1/8)*n^4 + (11/6)*n^3  (7/8)*n^2 + (3/20)*n for n>1.
%F Conjectures from _Colin Barker_, Jul 31 2018: (Start)
%F G.f.: x*(4  14*x + 36*x^2  57*x^3 + 48*x^4  18*x^5 + 3*x^6) / (1  x)^6.
%F a(n) = 6*a(n1)  15*a(n2) + 20*a(n3)  15*a(n4) + 6*a(n5)  a(n6) for n>7.
%F (End)
%e Some solutions for n=3:
%e ..1..0..0....3..0..0....0..0..1....0..0..0....0..0..0....2..0..0....0..0..0
%e ..3..0..0....3..0..0....0..0..0....3..0..0....1..0..0....3..0..0....0..0..0
%Y Cf. A220204.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 07 2012
