login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k triple descents (n>=0,0<=k<=n-3). We say that i is a triple descent of a permutation p if p(i) > p(i+1) > p(i+2) > p(i+3).
3

%I #33 Dec 01 2016 15:42:14

%S 1,1,2,6,23,1,111,8,1,642,67,10,1,4326,602,99,12,1,33333,5742,1093,

%T 137,14,1,288901,59504,12425,1852,181,16,1,2782082,666834,151635,

%U 24970,3029,231,18,1,29471046,8054684,1981499,355906,48455,4902,287,20,1

%N Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k triple descents (n>=0,0<=k<=n-3). We say that i is a triple descent of a permutation p if p(i) > p(i+1) > p(i+2) > p(i+3).

%C Row sums = n!.

%C T(n,0) = A117158.

%H Alois P. Heinz, <a href="/A220183/b220183.txt">Rows n = 0..143, flattened</a>

%H P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; see page 210

%F E.g.f.: 1/(1 - x - Sum_{k,n} I(n,k)(y - 1)^k*x^n/n!) where I(n,k) is the coefficient of y^k*x^n in the ordinary generating function expansion of y x^4/(1 - y*x - y*x^2 - y*x^3) See Flajolet and Sedgewick reference in Links section.

%e : 1;

%e : 1;

%e : 2;

%e : 6;

%e : 23, 1;

%e : 111, 8, 1;

%e : 642, 67, 10, 1;

%e : 4326, 602, 99, 12, 1;

%e : 33333, 5742, 1093, 137, 14, 1;

%e T(5,1) = 8 because we have: (4,5,3,2,1), (3,5,4,2,1), (2,5,4,3,1), (5,4,3,1,2), (1,5,4,3,2), (5,4,2,1,3), (5,3,2,1,4), (4,3,2,1,5).

%p b:= proc(u, o, t) option remember; `if`(u+o=0, 1, expand(

%p add(b(u-j, o+j-1, 1), j=1..u)+

%p add(b(u+j-1, o-j, [2, 3, 3][t])*`if`(t=3, x, 1), j=1..o)))

%p end:

%p T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0, 1)):

%p seq(T(n), n=0..14); # _Alois P. Heinz_, Oct 29 2013

%t nn=10; u=y-1; a=Apply[Plus, Table[Normal[Series[y x^4/(1-y x - y x^2-y x^3), {x,0,nn}]][[n]]/(n+3)!, {n,1,nn-3}]]/.y->u; Range[0,nn]! CoefficientList[Series[1/(1-x-a), {x,0,nn}], {x,y}]//Grid

%Y Cf. A162975, A242783, A242784.

%K nonn,tabf

%O 0,3

%A _Geoffrey Critzer_, Dec 12 2012