login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220180
E.g.f.: exp( Sum_{n>=1} (n+1)^(n-1) * x^n / n ).
0
1, 1, 4, 42, 924, 36300, 2265960, 206703840, 25945444560, 4287205253520, 901822916010240, 235245784759302240, 74515547291697610560, 28171404151229273014080, 12529985068482904127064960, 6476871523103017023955968000, 3850268179365489288889549267200
OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..n} (n-1)!/(n-k)! * (k+1)^(k-1) * a(n-k) for n>0 with a(0)=1.
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 42*x^3/3! + 924*x^4/4! + 36300*x^5/5! +...
where
log(A(x)) = x + 3*x^2/2 + 16*x^3/3 + 125*x^4/4 + 1296*x^5/5 + 16807*x^6/6 +...+ (n+1)^(n-1)*x^n/n +...
PROG
(PARI) {a(n)=if(n==0, 1, sum(k=1, n, (n-1)!/(n-k)! * (k+1)^(k-1) * a(n-k)))}
for(n=0, 12, print1(a(n), ", "))
CROSSREFS
Sequence in context: A352074 A267616 A243809 * A134356 A156479 A355130
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 06 2012
STATUS
approved