OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..n} (n-1)!/(n-k)! * (k+1)^(k-1) * a(n-k) for n>0 with a(0)=1.
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 42*x^3/3! + 924*x^4/4! + 36300*x^5/5! +...
where
log(A(x)) = x + 3*x^2/2 + 16*x^3/3 + 125*x^4/4 + 1296*x^5/5 + 16807*x^6/6 +...+ (n+1)^(n-1)*x^n/n +...
PROG
(PARI) {a(n)=if(n==0, 1, sum(k=1, n, (n-1)!/(n-k)! * (k+1)^(k-1) * a(n-k)))}
for(n=0, 12, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 06 2012
STATUS
approved