login
A220115
a(n) = A000120(n) - A007895(n), the number of 1's in binary expansion of n minus the number of terms in Zeckendorf representation of n.
4
0, 0, 0, 1, -1, 1, 0, 1, 0, 0, 0, 1, -1, 2, 1, 2, -1, -1, 0, 0, -1, 2, 1, 2, 0, 0, 1, 1, 0, 2, 1, 2, -2, -2, 1, 1, 0, 1, 0, 2, -1, 0, 1, 1, 0, 1, 0, 3, -1, 0, 0, 0, 0, 0, 0, 4, 1, 2, 2, 2, 2, 2, 2, 4, -2, -1, -1, -1, 0, 0, 0, 1, -2, 0, -1, 0, 1, 1, 1, 2, -2
OFFSET
0,14
LINKS
FORMULA
a(n) = A000120(n) - A007895(n).
EXAMPLE
a(4) = A000120(4) - A007895(4) = 1 - 2 = -1.
MATHEMATICA
zeck = DigitCount[Select[Range[0, 500], BitAnd[#, 2*#] == 0&], 2, 1]; DigitCount[Range[0, Length[zeck]-1], 2, 1] - zeck (* Jean-François Alcover, Jan 25 2018 *)
CROSSREFS
Sequence in context: A059782 A093654 A342627 * A039924 A349218 A364205
KEYWORD
base,sign,easy
AUTHOR
Alex Ratushnyak, Dec 05 2012
STATUS
approved