login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220113
E.g.f. A(x)=sum{n>0, a(n)x^(2*n-1)/(2*n-1)!} satisfies A(A(x))=sin(2*x)/2.
0
1, -2, -12, -424, -29808, -2966816, -237449920, 76118167936, 84317834342656, 53499781544238592, 20080969948883956736, -10740526073453596649472, -31099457241702481710116864
OFFSET
1,2
FORMULA
a(n)=T(2*n-1,1), T(n,m)=1/2*(2^(n-2*m)*(((-1)^(n-m)+1)*sum(i=0..m/2, (2*i-m)^n*binomial(m,i)*(-1)^((n+m)/2-i)))/m!-sum(i=m+1..n-1, T(n,i)*T(i,m))), n>m, T(n,n)=1.
MATHEMATICA
t[n_, m_] := t[n, m] = 1/2*(2^(n - 2*m)*(((-1)^(n-m) + 1)* Sum[(2*i - m)^n*Binomial[m, i]*(-1)^((n+m)/2 - i), {i, 0, m/2}])/m! - Sum[t[n, i]*t[i, m], {i, m+1, n-1}]); t[n_, n_] = 1; Table[ t[2*n-1, 1], {n, 1, 13}] (* Jean-François Alcover, Feb 22 2013 *)
PROG
(Maxima)
T(n, m):=if n=m then 1 else 1/2*(2^(n-2*m)*(((-1)^(n-m)+1)*sum((2*i-m)^n*binomial(m, i)*(-1)^((n+m)/2-i), i, 0, m/2))/m!-sum(T(n, i)*T(i, m), i, m+1, n-1));
makelist(((T3(2*n-1, 1))), n, 1, 7);
CROSSREFS
Cf. A048602.
Sequence in context: A324616 A060942 A072446 * A015181 A012378 A012383
KEYWORD
sign
AUTHOR
Dmitry Kruchinin, Dec 05 2012
STATUS
approved