This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A220027 a(n) = product(i >= 0, P(n, i)^(2^i)) where P(n, i) = product(p prime, n/2^(i+1) < p <= n/2^i). 1
 1, 1, 2, 6, 12, 60, 180, 1260, 5040, 5040, 25200, 277200, 2494800, 32432400, 227026800, 227026800, 3632428800, 61751289600, 61751289600, 1173274502400, 29331862560000, 29331862560000, 322650488160000, 7420961227680000, 601097859442080000, 601097859442080000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n) are the partial products of A219964(n). a(n) divides n!, n!/a(n) = 1, 1, 1, 1, 2, 2, 4, 4, 8, 72, 144, 144, 192... The swinging factorial (A056040) divides a(n), a(n)/n\$ = 1, 1, 1, 1, 2,... The primorial of n (A034386) divides a(n), a(n)/n# = 1, 1, 1, 1, 2, 2, 6,.. If p^k is the largest power of a prime dividing a(n) then k is 2^n for some n >= 0. a(n) / A055773(n) is the largest square dividing a(n), a(n) / A055773(n) = A008833(a(n)). LINKS MAPLE a := proc(n) local k; `if`(n < 2, 1, mul(k, k = select(isprime, [\$iquo(n, 2)+1..n]))*a(iquo(n, 2))^2) end: seq(a(i), i=0..25); PROG (Sage) def a(n) :     if n < 2 : return 1     return mul(k for k in prime_range(n//2+1, n+1))*a(n//2)^2 [a(n) for n in (0..25)] CROSSREFS Cf. A055773. Sequence in context: A101657 A104371 A104350 * A072489 A072487 A254232 Adjacent sequences:  A220024 A220025 A220026 * A220028 A220029 A220030 KEYWORD nonn AUTHOR Peter Luschny, Mar 30 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 08:27 EDT 2018. Contains 316405 sequences. (Running on oeis4.)