This site is supported by donations to The OEIS Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A220002 Numerators of the coefficients of an asymptotic expansion in even powers of the Catalan numbers. 8
1, 5, 21, 715, -162877, 19840275, -7176079695, 1829885835675, -5009184735027165, 2216222559226679575, -2463196751104762933637, 1679951011110471133453965, -5519118103058048675551057049, 5373485053345792589762994345215, -12239617587594386225052760043303511 (list; graph; refs; listen; history; text; internal format)



Let N = 4*n+3 and A = sum_{k>=0} a(k)/(A123854(k)*N^(2*k)) then

C(n) ~ 8*4^n*A/(N*sqrt(N*Pi)), C(n) = (4^n/sqrt(Pi))*(Gamma(n+1/2)/ Gamma(n+2)) the Catalan numbers A000108.

The asymptotic expansion of the Catalan numbers considered here is based on the Taylor expansion of square root of the sine cardinal. This asymptotic series involves only even powers of N, making it more efficient than the asymptotic series based on Stirling's approximation to the central binomial which involves all powers (see for example: D. E. Knuth, formula (16)). The series is discussed by Kessler and Schiff but is included as a special case in the asymptotic expansion given by J. L. Fields for quotients Gamma(x+a)/Gamma(x+b) and discussed by Y. L. Luke (p. 34-35), apparently overlooked by Kessler and Schiff.


J. L. Fields, A note on the asymptotic expansion of a ratio of gamma functions. Proc. Edinburgh Math. Soc. (15), 43-45, 1966.

Donald E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 4: Generating All Trees—History of Combinatorial Generation, 2006.

Y. L. Luke, The Special Functions and their Approximations, Vol. 1. Academic Press, 1969.


Peter Luschny, Table of n, a(n) for n = 0..99

D. Kessler and J. Schiff, The asymptotics of factorials, binomial coefficients and Catalan numbers. April 2006.


Let [x^n]T(f(x)) denote the coefficient of x^n in the Taylor expansion of f(x) then r(n) = (-1)^n*prod_{i=1..2n}(2i+1)*[x^(2*n)]T(sqrt(sin(x)/x)) is the rational coefficient of the asymptotic expansion (in N=4*n+3) and a(n) = numerator(r(n)) = r(n)*2^(3*n-bs(n)), where bs(n) is the binary sum of n (A000120).

Also a(n) = numerator([x^(2*n)]T(exp(S))) where S = sum_{k>=1}((4-E(2*k))/ (4*k)*x^(2*k)) and E(n) the Euler numbers A122045.

Also a(n) = sf(4*n+1)*2^(3*n-bs(n))*F_{2*n}(-1/4) where sf(n) is the swinging factorial A056040, bs(n) the binary sum of n and F_{n}(x) J. L. Fields' generalized Bernoulli polynomials A220412.

In terms of sequences this means

r(n) = (-1)^n*A103639(n)*A008991(n)/A008992(n),

a(n) = (-1)^n*A220371(n)*A008991(n)/A008992(n).

Note that a(n) = r(n)*A123854(n) and A123854(n) = 2^A004134(n) = 8^n/2^A000120(n).

Formula from Johannes W. Meijer:

a(n) = d(n+1)*A098597(2*n+1)*(A008991(n)/A008992(n)) with d(1) = 1 and

d(n+1) = -4*(2*n+1)*A161151(n)*d(n),

d(n+1) = (-1)^n*2^(-1)*(2*(n+1))!*A060818(n)*A048896(n).


With N = 4*n+3 the first few terms of A are A = 1 + 5/(4*N^2) + 21/(32*N^4) + 715/(128*N^6) - 162877/(2048*N^8) + 19840275/(8192*N^10). With this A C(n) = round(8*4^n*A/(N*sqrt(N*Pi))) for n = 0..39 (if computed with sufficient numerical precision).


A220002 := proc(n) local s; s := n -> `if`(n > 0, s(iquo(n, 2))+n, 0);

(-1)^n*mul(4*i+2, i = 1..2*n)*2^s(iquo(n, 2))*coeff(taylor(sqrt(sin(x)/x), x, 2*n+2), x, 2*n) end: seq(A220002(n), n = 0..14);

# Second program illustrating J. L. Fields expansion of gamma quotients.

A220002 := proc(n) local recF, binSum, swing;

binSum := n -> add(i, i=convert(n, base, 2));

swing := n -> n!/iquo(n, 2)!^2;

recF := proc(n, x) option remember; `if`(n=0, 1, -2*x*add(binomial(n-1, 2*k+1)*bernoulli(2*k+2)/(2*k+2)*recF(n-2*k-2, x), k=0..n/2-1)) end: recF(2*n, -1/4)*2^(3*n-binSum(n))*swing(4*n+1) end:


max = 14; CoefficientList[ Series[ Sqrt[ Sinc[x]], {x, 0, 2*max+1}], x^2][[1 ;; max+1]]*Table[ (-1)^n*Product[ (2*k+1), {k, 1, 2*n}], {n, 0, max}] // Numerator (* Jean-François Alcover, Jun 26 2013 *)



len = 15; T = taylor(sqrt(sin(x)/x), x, 0, 2*len+2)

def A005187(n): return A005187(n//2) + n if n > 0 else 0

def A220002(n):

    P = mul(4*i+2 for i in (1..2*n)) << A005187(n//2)

    return (-1)^n*P*T.coeff(x, 2*n)

[A220002(n) for n in range(len)]

# Second program illustrating the connection with the Euler numbers.

def A220002_list(n):

    S = lambda n: sum((4-euler_number(2*k))/(4*k*x^(2*k)) for k in (1..n))

    T = taylor(exp(S(2*n+1)), x, infinity, 2*n-1).coefficients()

    return [t[0].numerator() for t in T][::-1]



The logarithmic version is A220422. Appears in A193365 and A220466.

Cf. A220412.

Sequence in context: A143503 A144779 A193324 * A156860 A225846 A247937

Adjacent sequences:  A219999 A220000 A220001 * A220003 A220004 A220005




Peter Luschny, Dec 27 2012



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified October 20 17:39 EDT 2017. Contains 293648 sequences.