OFFSET
0,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,3,-2,0,-1,1,0,1).
FORMULA
G.f.: -(x-1)^2*(x^2+x+1)^2 / (x^9+x^7-x^6-2*x^4+3*x^3+x-1).
a(n) = 1 + Sum_{i=0..n-3} a(i)*(1 + B*(B-1)) where B=floor((n-i)/3). E.g. a(7) = 1 + a(0)*3 + a(1)*3 + a(2)*1 + a(3)*1 + a(4)*1 = 13. - Greg Dresden and Andrew Chang, Aug 23 2022
EXAMPLE
a(6) = 8, because there are 8 tilings of a 3 X 6 rectangle using straight (3 X 1) trominoes and 2 X 2 tiles:
._._._._._._. ._____._._._. ._._____._._. ._._._____._.
| | | | | | | |_____| | | | | |_____| | | | | |_____| |
| | | | | | | |_____| | | | | |_____| | | | | |_____| |
|_|_|_|_|_|_| |_____|_|_|_| |_|_____|_|_| |_|_|_____|_|
._._._._____. ._____._____. .___.___.___. ._____._____.
| | | |_____| |_____|_____| | | | | |_____|_____|
| | | |_____| |_____|_____| |___|_._|___| | | | |
|_|_|_|_____| |_____|_____| |_____|_____| |___|___|___|
MAPLE
gf:= -(x-1)^2*(x^2+x+1)^2 / (x^9+x^7-x^6-2*x^4+3*x^3+x-1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..50);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Dec 02 2012
STATUS
approved