login
A219855
Number of 4Xn arrays of the minimum value of corresponding elements and their horizontal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 4Xn array
1
15, 33, 225, 1302, 5950, 23946, 88110, 303739, 996299, 3134799, 9509576, 27911314, 79482488, 220049935, 593073991, 1557365893, 3986731613, 9954711223, 24261060624, 57756733037, 134430995512, 306213956668, 683311240461
OFFSET
1,1
COMMENTS
Row 4 of A219852
LINKS
FORMULA
Empirical: a(n) = (1/4476539695045017600000)*n^25 - (1/10521781334507520000)*n^24 + (731099/34469355651846635520000)*n^23 - (31627/9859655506821120000)*n^22 + (42536399/116779296392478720000)*n^21 - (17707087/540644890705920000)*n^20 + (35134937603/14597412049059840000)*n^19 - (858456113/5820339732480000)*n^18 + (36499179417979/4780439033610240000)*n^17 - (35508053885867/105450861035520000)*n^16 + (2299252943948789/180772904632320000)*n^15 - (1266420435546319/3068675850240000)*n^14 + (45796004944005863161/3977003901911040000)*n^13 - (3520116128603007397/12746807377920000)*n^12 + (1197917853623717248663/210901722071040000)*n^11 - (1315465329075664858459/13181357629440000)*n^10 + (81681760489360582476587/54877488906240000)*n^9 - (754404910866400228157/40419025920000)*n^8 + (353892739810318116207762331/1824676506132480000)*n^7 - (62078954068811245030051031/38014093877760000)*n^6 + (4764568085262213723737372453/443497761907200000)*n^5 - (442494509961053995830154733/8558728738560000)*n^4 + (139493031467135894289315229/890515347321600)*n^3 - (865466610579163798625533/5936768982144)*n^2 - (4206940214873365983779/5354228880)*n + 2337982013816 for n>23
EXAMPLE
Some solutions for n=3
..1..1..0....1..1..1....0..0..0....1..0..0....1..1..1....0..0..0....1..0..0
..0..0..0....1..1..1....0..0..2....1..0..0....1..1..1....0..0..1....0..0..0
..0..0..2....1..0..0....1..1..2....1..0..2....1..1..0....1..0..0....0..0..1
..2..2..2....1..0..1....2..1..1....2..2..2....0..0..0....1..0..2....2..1..1
CROSSREFS
Sequence in context: A322493 A190052 A242243 * A270072 A085803 A168573
KEYWORD
nonn
AUTHOR
R. H. Hardin Nov 29 2012
STATUS
approved