login
A219771
Number of nX6 arrays of the minimum value of corresponding elements and their horizontal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and columns, 0..1 nX6 array
1
6, 15, 114, 771, 4837, 27921, 147717, 725287, 3342140, 14569918, 60328126, 237879223, 895542427, 3227615841, 11166814658, 37186260684, 119490688029, 371363754669, 1118694131688, 3272799722189, 9315261723895, 25836710356888
OFFSET
1,1
COMMENTS
Column 6 of A219773
LINKS
FORMULA
Empirical: a(n) = (1/5045482405461984828938794598400000000)*n^35 - (1/24026106692676118233041879040000000)*n^34 + (1/226128062989892877487452979200000)*n^33 - (1/20154016309259614749327360000000)*n^32 - (8117/160602317464412555033702400000000)*n^31 + (523/62796605069174019563520000000)*n^30 - (12352037/17407218925175038223007744000000)*n^29 + (4175543/142916411536740872110080000000)*n^28 + (469811/431510904398372198400000000)*n^27 - (186288391/635184051274403876044800000)*n^26 + (43292262799/1612390284004255993036800000)*n^25 - (16434584319113/10749268560028373286912000000)*n^24 + (34406626787188211/687785230520565447029760000000)*n^23 + (10868974062757/37659133474767028224000000)*n^22 - (26961751162911413/165700187288974924185600000)*n^21 + (313057556087848987/25106088983178018816000000)*n^20 - (43059031263431107672753/70422579597814342778880000000)*n^19 + (1321674059887966104503/61774192629661704192000000)*n^18 - (10327817019769189154250607/20878223598410840447385600000)*n^17 + (251580033754741426914419/83546312918810886144000000)*n^16 + (62633687460385827269002961459/170878318141755390566400000000)*n^15 - (505931715292926968104115549947/22783775752234052075520000000)*n^14 + (7785785853634643676737666066489/9674341704025535958220800000)*n^13 - (161318354869711120391008912774801/7329046745473890877440000000)*n^12 + (1810706701943012105979735192864715543/3751555802839447892889600000000)*n^11 - (56250707391568336374011456183681981/6496200524397312368640000000)*n^10 + (75937837134216333503612122808819341/595485048069753633792000000)*n^9 - (1012140196838846857295099311188509183/661650053410837370880000000)*n^8 + (19531985879255006838867914559288528083/1332489690896825260800000000)*n^7 - (11511906015429983301730395594047666839/106599175271746020864000000)*n^6 + (311533258539487424211711493505944774213/553157024725342938700800000)*n^5 - (48253290984878846028336242619099005827/30291932306387827595520000)*n^4 - (13746274809531221217642844567562691691/6130510109626107965760000)*n^3 + (161161720297649296696748119194743/3685972889385586800)*n^2 - (118102225936548097445761267/656379785880)*n + 283503057055009 for n>21
EXAMPLE
Some solutions for n=3
..0..0..0..1..1..1....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..1
..0..0..0..1..1..1....0..0..0..0..0..1....0..0..0..0..0..0....0..0..0..1..1..0
..0..0..1..1..1..1....0..1..1..1..1..1....1..1..1..0..0..0....0..0..0..0..0..0
CROSSREFS
Sequence in context: A133472 A213873 A372990 * A087137 A056317 A129421
KEYWORD
nonn
AUTHOR
R. H. Hardin Nov 27 2012
STATUS
approved