login
A219741
T(n,k) = Unmatched value maps: number of nXk binary arrays indicating the locations of corresponding elements not equal to any horizontal, vertical or antidiagonal neighbor in a random 0..1 nXk array.
7
1, 2, 2, 4, 6, 4, 7, 13, 13, 7, 12, 28, 42, 28, 12, 21, 60, 126, 126, 60, 21, 37, 129, 387, 524, 387, 129, 37, 65, 277, 1180, 2229, 2229, 1180, 277, 65, 114, 595, 3606, 9425, 13322, 9425, 3606, 595, 114, 200, 1278, 11012, 39905, 78661, 78661, 39905, 11012, 1278, 200
OFFSET
1,2
COMMENTS
Table starts
...1.....2......4........7.........12...........21.............37
...2.....6.....13.......28.........60..........129............277
...4....13.....42......126........387.........1180...........3606
...7....28....126......524.......2229.........9425..........39905
..12....60....387.....2229......13322........78661.........466288
..21...129...1180.....9425......78661.......647252........5350080
..37...277...3606....39905.....466288......5350080.......61758332
..65...595..11012...168925....2760690.....44159095......711479843
.114..1278..33636...715072...16350693....364647622.....8201909757
.200..2745.102733..3027049...96830726...3010723330....94531063074
.351..5896.313781.12813931..573456240..24858935864..1089590912023
.616.12664.958384.54243509.3396136349.205253857220.12558669019786
LINKS
FORMULA
Zeilberger's Maple code (see links in A228285) would presumably give recurrences for the columns of this array. - N. J. A. Sloane, Aug 22 2013
EXAMPLE
Some solutions for n=3 k=4
..0..0..0..0....1..0..0..1....0..0..1..0....0..0..1..0....0..0..0..1
..0..1..0..0....0..0..0..0....1..0..0..0....0..0..0..0....0..1..0..0
..0..0..0..0....0..1..0..1....0..0..0..1....1..0..0..1....0..0..0..0
CROSSREFS
Column 1 is A005251(n+2).
Column 2 is A002478(n+1).
Column 3 is A105262(n+1) for n>1.
Main diagonal is A066864.
See A226444 for an array with very similar entries. - N. J. A. Sloane, Aug 22 2013
Sequence in context: A350229 A085730 A232065 * A210603 A252820 A218765
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 26 2012
STATUS
approved