

A219734


Decimal expansion of 1/s, where s = sum_{n = 1..infinity} 1/p(n), where p(n) is the product of numbers n^2 + 1 to (n+1)^2  1.


1



5, 9, 7, 8, 6, 3, 7, 7, 6, 6, 6, 1, 0, 5, 4, 4, 0, 9, 5, 9, 7, 5, 5, 6, 5, 6, 2, 7, 1, 8, 2, 3, 0, 6, 5, 1, 3, 8, 0, 1, 5, 6, 4, 6, 8, 3, 6, 2, 5, 0, 3, 8, 9, 3, 7, 4, 9, 4, 6, 7, 9, 0, 8, 8, 1, 5, 3, 9, 7, 1, 5, 7, 2, 1, 6, 9, 3, 0, 9, 2, 0, 6, 3, 1, 0, 9, 2, 4, 0, 4, 0, 6, 2, 1, 2, 6, 1, 7, 7, 7, 4, 1, 4, 3, 2
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Decimal expansion of reciprocal of sum of reciprocal of product of numbers between perfect squares.


LINKS

Table of n, a(n) for n=1..105.


EXAMPLE

5.9786377666105440959755656271823065138015646836250...


MAPLE

evalf(1/Sum(GAMMA(n^2+1)/GAMMA((n+1)^2), n=1..infinity), 120); # Vaclav Kotesovec, Mar 01 2016


MATHEMATICA

1/NSum[(1/Pochhammer[m^2 + 1, 2 m]), {m, 1, Infinity}, WorkingPrecision > 105]


CROSSREFS

Cf. A219733.
Sequence in context: A200597 A140724 A086055 * A077125 A233831 A232190
Adjacent sequences: A219731 A219732 A219733 * A219735 A219736 A219737


KEYWORD

cons,nonn


AUTHOR

Fred Daniel Kline, Nov 26 2012


STATUS

approved



