login
A219734
Decimal expansion of 1/s, where s = Sum_{n>=1} 1/p(n), where p(n) is the product of numbers n^2 + 1 to (n+1)^2 - 1.
1
5, 9, 7, 8, 6, 3, 7, 7, 6, 6, 6, 1, 0, 5, 4, 4, 0, 9, 5, 9, 7, 5, 5, 6, 5, 6, 2, 7, 1, 8, 2, 3, 0, 6, 5, 1, 3, 8, 0, 1, 5, 6, 4, 6, 8, 3, 6, 2, 5, 0, 3, 8, 9, 3, 7, 4, 9, 4, 6, 7, 9, 0, 8, 8, 1, 5, 3, 9, 7, 1, 5, 7, 2, 1, 6, 9, 3, 0, 9, 2, 0, 6, 3, 1, 0, 9, 2, 4, 0, 4, 0, 6, 2, 1, 2, 6, 1, 7, 7, 7, 4, 1, 4, 3, 2
OFFSET
1,1
COMMENTS
Decimal expansion of reciprocal of sum of reciprocal of product of numbers between perfect squares.
EXAMPLE
5.9786377666105440959755656271823065138015646836250...
MAPLE
evalf(1/Sum(GAMMA(n^2+1)/GAMMA((n+1)^2), n=1..infinity), 120); # Vaclav Kotesovec, Mar 01 2016
MATHEMATICA
1/NSum[(1/Pochhammer[m^2 + 1, 2 m]), {m, 1, Infinity}, WorkingPrecision -> 105]
CROSSREFS
Cf. A219733.
Sequence in context: A200597 A140724 A086055 * A077125 A233831 A232190
KEYWORD
cons,nonn
AUTHOR
Fred Daniel Kline, Nov 26 2012
STATUS
approved